These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16502620)

  • 61. Incoherent broadband cavity enhanced absorption spectroscopy using supercontinuum and superluminescent diode sources.
    Aalto A; Genty G; Laurila T; Toivonen J
    Opt Express; 2015 Sep; 23(19):25225-34. PubMed ID: 26406720
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Broadband rotary joint for high-speed ultrahigh-resolution endoscopic OCT imaging at 800  nm.
    Park HC; Mavadia-Shukla J; Yuan W; Alemohammad M; Li X
    Opt Lett; 2017 Dec; 42(23):4978-4981. PubMed ID: 29216160
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications.
    Shen C; Ng TK; Leonard JT; Pourhashemi A; Nakamura S; DenBaars SP; Speck JS; Alyamani AY; El-Desouki MM; Ooi BS
    Opt Lett; 2016 Jun; 41(11):2608-11. PubMed ID: 27244426
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography.
    Herz P; Chen Y; Aguirre A; Fujimoto J; Mashimo H; Schmitt J; Koski A; Goodnow J; Petersen C
    Opt Express; 2004 Jul; 12(15):3532-42. PubMed ID: 19483882
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm.
    Huber R; Wojtkowski M; Fujimoto JG; Jiang JY; Cable AE
    Opt Express; 2005 Dec; 13(26):10523-38. PubMed ID: 19503267
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Incoherent excess noise spectrally encodes broadband light sources.
    Kho AM; Zhang T; Zhu J; Merkle CW; Srinivasan VJ
    Light Sci Appl; 2020; 9():172. PubMed ID: 33082941
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Feasibility of three-dimensional optical coherence tomography and optical Doppler tomography of malignancy in hamster cheek pouches.
    Hanna NM; Waite W; Taylor K; Jung WG; Mukai D; Matheny E; Kreuter K; Wilder-Smith P; Brenner M; Chen Z
    Photomed Laser Surg; 2006 Jun; 24(3):402-9. PubMed ID: 16875451
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In vivo optical interferometric imaging of human skin utilizing monochromatic light source.
    Osawa K; Minemura H; Anzai Y; Tomita D; Shimanaka T; Suzuki T; Iida H; Matsuura N; Katagiri C; Yamashita T; Hara Y; Watanabe K
    Appl Opt; 2016 Jul; 55(19):5052-6. PubMed ID: 27409189
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence.
    Ahmad A; Mahanty T; Dubey V; Butola A; Ahluwalia BS; Mehta DS
    Opt Lett; 2019 Apr; 44(7):1817-1820. PubMed ID: 30933155
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Detection of ionized air using a photonic-crystal nanocavity excited by broadband light from a superluminescent diode.
    Takahashi Y; Fujimoto M; Kikunaga K; Takahashi Y
    Opt Express; 2022 Mar; 30(7):10694-10708. PubMed ID: 35473030
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair.
    Ko TH; Fujimoto JG; Duker JS; Paunescu LA; Drexler W; Baumal CR; Puliafito CA; Reichel E; Rogers AH; Schuman JS
    Ophthalmology; 2004 Nov; 111(11):2033-43. PubMed ID: 15522369
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography in vivo.
    Cui D; Liu X; Zhang J; Yu X; Ding S; Luo Y; Gu J; Shum P; Liu L
    Opt Lett; 2014 Dec; 39(23):6727-30. PubMed ID: 25490663
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus.
    Li XD; Boppart SA; Van Dam J; Mashimo H; Mutinga M; Drexler W; Klein M; Pitris C; Krinsky ML; Brezinski ME; Fujimoto JG
    Endoscopy; 2000 Dec; 32(12):921-30. PubMed ID: 11147939
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators.
    Kang J; Feng P; Li B; Zhang C; Wei X; Lam EY; Tsia KK; Wong KKY
    Opt Express; 2018 Sep; 26(19):24928-24939. PubMed ID: 30469601
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of silica-based waveguides with an interferometric optical time-domain reflectometry system using a 1.3-microm-wavelength superluminescent diode.
    Takada K; Takato N; Noda J; Noguchi Y
    Opt Lett; 1989 Jul; 14(13):706-8. PubMed ID: 19752943
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Investigation of the impact of water absorption on retinal OCT imaging in the 1060 nm range.
    Marschall S; Pedersen C; Andersen PE
    Biomed Opt Express; 2012 Jul; 3(7):1620-31. PubMed ID: 22808433
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography.
    Marks DL; Oldenburg AL; Reynolds JJ; Boppart SA
    Opt Lett; 2002 Nov; 27(22):2010-2. PubMed ID: 18033428
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation.
    Fuchs S; Rödel C; Blinne A; Zastrau U; Wünsche M; Hilbert V; Glaser L; Viefhaus J; Frumker E; Corkum P; Förster E; Paulus GG
    Sci Rep; 2016 Feb; 6():20658. PubMed ID: 26860894
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Signal and resolution enhancements in dual beam optical coherence tomography of the human eye.
    Baumgartner A; Hitzenberger CK; Sattmann H; Drexler W; Fercher AF
    J Biomed Opt; 1998 Jan; 3(1):45-54. PubMed ID: 23015005
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization and Analysis of Relative Intensity Noise in Broadband Optical Sources for Optical Coherence Tomography.
    Shin S; Sharma U; Tu H; Jung W; Boppart SA
    IEEE Photonics Technol Lett; 2010; 22(14):1057-1059. PubMed ID: 22090794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.