These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16502655)

  • 1. Methodology for predicting oxygen transport on an intravenous membrane oxygenator combining computational and analytical models.
    Guzmán AM; Escobar RA; Amon CH
    J Biomech Eng; 2005 Dec; 127(7):1127-40. PubMed ID: 16502655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow mixing enhancement from balloon pulsations in an intravenous oxygenator.
    Guzmán AM; Escobar RA; Amon CH
    J Biomech Eng; 2005 Jun; 127(3):400-15. PubMed ID: 16060347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current progress in the development of an intravenous membrane oxygenator.
    Reeder GD; Hattler BG; Rawleigh J; Walters FR; Sawzik PJ; Lund LW; Klain M; Goode JS; Borovetz HS
    ASAIO J; 1993; 39(3):M461-5. PubMed ID: 8268579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow and Oxygen Transfer Characteristics of an Intravenous Membrane Oxygenator: A Computational Study.
    Guzmán AM; Amon CH
    Comput Methods Biomech Biomed Engin; 2000; 3(2):147-166. PubMed ID: 11264845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an intravenous membrane oxygenator: enhanced intravenous gas exchange through convective mixing of blood around hollow fiber membranes.
    Hattler BG; Reeder GD; Sawzik PJ; Lund LW; Walters FR; Shah AS; Rawleigh J; Goode JS; Klain M; Borovetz HS
    Artif Organs; 1994 Nov; 18(11):806-12. PubMed ID: 7864728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ex vivo testing of the intravenous membrane oxygenator.
    Federspiel WJ; Golob JF; Merrill TL; Lund LW; Bultman JA; Frankowski BJ; Watach M; Litwak K; Hattler BG
    ASAIO J; 2000; 46(3):261-7. PubMed ID: 10826733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Modeling of Oxygen Transfer in Artificial Lungs.
    Kaesler A; Rosen M; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2018 Aug; 42(8):786-799. PubMed ID: 30043394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model of gas exchange in an intravenous membrane oxygenator.
    Hewitt TJ; Hattler BG; Federspiel WJ
    Ann Biomed Eng; 1998; 26(1):166-78. PubMed ID: 10355561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-assisted numerical analysis for oxygen and carbon dioxide mass transfer in blood oxygenators.
    Turri F; Yanagihara JI
    Artif Organs; 2011 Jun; 35(6):579-92. PubMed ID: 21671959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modeling of pulsatile blood flow through a mini-oxygenator in artificial lungs.
    Tang TQ; Hsu SY; Dahiya A; Soh CH; Lin KC
    Comput Methods Programs Biomed; 2021 Sep; 208():106241. PubMed ID: 34247118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model to predict CO2 removal in hollow fiber membrane oxygenators.
    Svitek RG; Federspiel WJ
    Ann Biomed Eng; 2008 Jun; 36(6):992-1003. PubMed ID: 18347984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional computational model of a blood oxygenator reconstructed from micro-CT scans.
    D'Onofrio C; van Loon R; Rolland S; Johnston R; North L; Brown S; Phillips R; Sienz J
    Med Eng Phys; 2017 Sep; 47():190-197. PubMed ID: 28716304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an intravenous membrane oxygenator: a new concept in mechanical support for the failing lung.
    Hattler BG; Reeder GD; Sawzik PJ; Walters FR; Pham SM; Kormos RL; Keenan RJ; Griffith BP; Armitage JM; Hardesty RL
    J Heart Lung Transplant; 1994; 13(6):1003-8. PubMed ID: 7865505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A validated CFD model to predict O₂ and CO₂ transfer within hollow fiber membrane oxygenators.
    Hormes M; Borchardt R; Mager I; Rode TS; Behr M; Steinseifer U
    Int J Artif Organs; 2011 Mar; 34(3):317-25. PubMed ID: 21462147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: computational and experimental studies.
    Zierenberg JR; Fujioka H; Cook KE; Grotberg JB
    J Biomech Eng; 2008 Jun; 130(3):031019. PubMed ID: 18532868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of blood flow in a balloon-pulsed intravascular respiratory catheter.
    Zinovik IN; Federspiel WJ
    ASAIO J; 2007; 53(4):464-8. PubMed ID: 17667232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a mathematical model to predict oxygen transfer rates in hollow fiber membrane oxygenators.
    Vaslef SN; Mockros LF; Anderson RW; Leonard RJ
    ASAIO J; 1994; 40(4):990-6. PubMed ID: 7858338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical modeling of anisotropic fiber bundle behavior in oxygenators.
    Bhavsar SS; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2011 Nov; 35(11):1095-102. PubMed ID: 21973082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved computational fluid dynamic simulations of blood flow in membrane oxygenators from X-ray imaging.
    Jones CC; McDonough JM; Capasso P; Wang D; Rosenstein KS; Zwischenberger JB
    Ann Biomed Eng; 2013 Oct; 41(10):2088-98. PubMed ID: 23673653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration analysis of vessel wall motion with intra vena caval balloon pumping.
    Shafi AS; Lund LW; Walters FR; Sawzik PJ; Reeder GD; Borovetz HS; Hattler BG
    ASAIO J; 1994; 40(3):M740-2. PubMed ID: 8555613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.