BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 16503590)

  • 1. Continuous flow microfluidic demixing of electrolytes by induced charge electrokinetics in structured electrode arrays.
    Leinweber FC; Eijkel JC; Bomer JG; van den Berg A
    Anal Chem; 2006 Mar; 78(5):1425-34. PubMed ID: 16503590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating particles in microfluidics by floating electrodes.
    Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O
    Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array.
    Han KH; Han SI; Frazier AB
    Lab Chip; 2009 Oct; 9(20):2958-64. PubMed ID: 19789750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel microfluidic driver via AC electrokinetics.
    Kuo CT; Liu CH
    Lab Chip; 2008 May; 8(5):725-33. PubMed ID: 18432342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspective on concentration polarization effects in electrochromatographic separations.
    Tallarek U; Leinweber FC; Nischang I
    Electrophoresis; 2005 Jan; 26(2):391-404. PubMed ID: 15657887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation.
    Zhu X; Yi Chu L; Chueh BH; Shen M; Hazarika B; Phadke N; Takayama S
    Analyst; 2004 Nov; 129(11):1026-31. PubMed ID: 15508030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetics in microfluidic channels containing a floating electrode.
    Dhopeshwarkar R; Hlushkou D; Nguyen M; Tallarek U; Crooks RM
    J Am Chem Soc; 2008 Aug; 130(32):10480-1. PubMed ID: 18642919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new floating electrode structure for generating homogeneous electrical fields in microfluidic channels.
    Segerink LI; Sprenkels AJ; Bomer JG; Vermes I; van den Berg A
    Lab Chip; 2011 Jun; 11(12):1995-2001. PubMed ID: 21279234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges.
    Chun H; Chung TD; Kim HC
    Anal Chem; 2005 Apr; 77(8):2490-5. PubMed ID: 15828785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields.
    van der Wouden EJ; Hermes DC; Gardeniers JG; van den Berg A
    Lab Chip; 2006 Oct; 6(10):1300-5. PubMed ID: 17102843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling two-dimensional movement of microparticles over an electrode array surface.
    Lin JT; Yeow JT; Wan W
    Biomed Microdevices; 2009 Feb; 11(1):193-200. PubMed ID: 18815885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple method to determine the surface charge in microfluidic channels.
    Mampallil D; van den Ende D; Mugele F
    Electrophoresis; 2010 Jan; 31(3):563-9. PubMed ID: 20119966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane.
    Dhopeshwarkar R; Crooks RM; Hlushkou D; Tallarek U
    Anal Chem; 2008 Feb; 80(4):1039-48. PubMed ID: 18197694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentration polarization-based nonlinear electrokinetics in porous media: induced-charge electroosmosis.
    Leinweber FC; Tallarek U
    J Phys Chem B; 2005 Nov; 109(46):21481-5. PubMed ID: 16853786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyte transport past a nanofluidic intermediate electrode junction in a microfluidic device.
    Mao X; Reschke BR; Timperman AT
    Electrophoresis; 2010 Aug; 31(15):2686-94. PubMed ID: 20665927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral transport of solutes in microfluidic channels using electrochemically generated gradients in redox-active surfactants.
    Liu X; Abbott NL
    Anal Chem; 2011 Apr; 83(8):3033-41. PubMed ID: 21446653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous-Flow Nanoparticle Trapping Driven by Hybrid Electrokinetics in Microfluidics.
    Liu W; Tao Y; Xue R; Song C; Wu Q; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):939-949. PubMed ID: 32705697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrohydrodynamics in hierarchically structured monolithic and particulate fixed beds.
    Nischang I; Chen G; Tallarek U
    J Chromatogr A; 2006 Mar; 1109(1):32-50. PubMed ID: 16386749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.