BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1650362)

  • 1. Transposon-encoded sucrose metabolism in Lactococcus lactis. Purification of sucrose-6-phosphate hydrolase and genetic linkage to N5-(L-1-carboxyethyl)-L-ornithine synthase in strain K1.
    Thompson J; Nguyen NY; Sackett DL; Donkersloot JA
    J Biol Chem; 1991 Aug; 266(22):14573-9. PubMed ID: 1650362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and properties of fructokinase I from Lactococcus lactis. Localization of scrK on the sucrose-nisin transposon Tn5306.
    Thompson J; Sackett DL; Donkersloot JA
    J Biol Chem; 1991 Nov; 266(33):22626-33. PubMed ID: 1658003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous loss of N5-(carboxyethyl)ornithine synthase, nisin production, and sucrose-fermenting ability by Lactococcus lactis K1.
    Donkersloot JA; Thompson J
    J Bacteriol; 1990 Jul; 172(7):4122-6. PubMed ID: 2163399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, expression, sequence analysis, and site-directed mutagenesis of the Tn5306-encoded N5-(carboxyethyl)ornithine synthase from Lactococcus lactis K1.
    Donkersloot JA; Thompson J
    J Biol Chem; 1995 May; 270(20):12226-34. PubMed ID: 7744873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of scrA and scrB from Streptococcus sobrinus 6715.
    Chen YY; LeBlanc DJ
    Infect Immun; 1992 Sep; 60(9):3739-46. PubMed ID: 1500184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N5-(L-1-carboxyethyl)-L-ornithine:NADP+ oxidoreductase from Streptococcus lactis. Purification and partial characterization.
    Thompson J
    J Biol Chem; 1989 Jun; 264(16):9592-601. PubMed ID: 2498334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and metabolism of sucrose by Streptococcus lactis.
    Thompson J; Chassy BM
    J Bacteriol; 1981 Aug; 147(2):543-51. PubMed ID: 6267012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation of the Tn5276-located Lactococcus lactis sucrose operon and characterization of the sacA gene encoding sucrose-6-phosphate hydrolase.
    Rauch PJ; de Vos WM
    Gene; 1992 Nov; 121(1):55-61. PubMed ID: 1330831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of the scrA and scrB genes from Klebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein Enzyme II Scr of the phosphotransferase system and a sucrose-6-phosphate invertase.
    Titgemeyer F; Jahreis K; Ebner R; Lengeler JW
    Mol Gen Genet; 1996 Feb; 250(2):197-206. PubMed ID: 8628219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence analysis of scrA and scrB from Streptococcus sobrinus 6715.
    Chen YY; Lee LN; LeBlanc DJ
    Infect Immun; 1993 Jun; 61(6):2602-10. PubMed ID: 8500898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of enzyme IIscr and sucrose-6-phosphate hydrolase activities in Streptococcus mutans by transcriptional repressor ScrR binding to the cis-active determinants of the scr regulon.
    Wang B; Kuramitsu HK
    J Bacteriol; 2003 Oct; 185(19):5791-9. PubMed ID: 13129950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis.
    Rauch PJ; De Vos WM
    J Bacteriol; 1992 Feb; 174(4):1280-7. PubMed ID: 1310502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system.
    Sato Y; Poy F; Jacobson GR; Kuramitsu HK
    J Bacteriol; 1989 Jan; 171(1):263-71. PubMed ID: 2536656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution and evolution of nisin-sucrose elements in Lactococcus lactis.
    Rauch PJ; Beerthuyzen MM; de Vos WM
    Appl Environ Microbiol; 1994 Jun; 60(6):1798-804. PubMed ID: 8031080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional regulation of the sucrase gene of Staphylococcus xylosus by the repressor ScrR.
    Gering M; Brückner R
    J Bacteriol; 1996 Jan; 178(2):462-9. PubMed ID: 8550467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and characterization of scrB, the structural gene for the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system sucrose-6-phosphate hydrolase.
    Lunsford RD; Macrina FL
    J Bacteriol; 1986 May; 166(2):426-34. PubMed ID: 3009399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetics of the nisin operon and the sucrose-nisin conjugative transposon Tn5276.
    De Vos WM; Beerthuyzen MM; Luesink EL; Kuipers OP
    Dev Biol Stand; 1995; 85():617-25. PubMed ID: 8586240
    [No Abstract]   [Full Text] [Related]  

  • 18. Isolation and characterization of the sucrose 6-phosphate hydrolase gene from Streptococcus mutans.
    Hayakawa M; Aoki H; Kuramitsu HK
    Infect Immun; 1986 Sep; 53(3):582-6. PubMed ID: 3017864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of sucrose and its five linkage-isomeric alpha-D-glucosyl-D-fructoses by Klebsiella pneumoniae. Participation and properties of sucrose-6-phosphate hydrolase and phospho-alpha-glucosidase.
    Thompson J; Robrish SA; Immel S; Lichtenthaler FW; Hall BG; Pikis A
    J Biol Chem; 2001 Oct; 276(40):37415-25. PubMed ID: 11473129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400.
    Schmid K; Ebner R; Altenbuchner J; Schmitt R; Lengeler JW
    Mol Microbiol; 1988 Jan; 2(1):1-8. PubMed ID: 2835584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.