BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 16503624)

  • 1. Analysis of non-Newtonian liquids using a microfluidic capillary viscometer.
    Srivastava N; Burns MA
    Anal Chem; 2006 Mar; 78(5):1690-6. PubMed ID: 16503624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoliter viscometer for analyzing blood plasma and other liquid samples.
    Srivastava N; Davenport RD; Burns MA
    Anal Chem; 2005 Jan; 77(2):383-92. PubMed ID: 15649032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly accurate and consistent microfluidic viscometer for continuous blood viscosity measurement.
    Kang YJ; Yoon SY; Lee KH; Yang S
    Artif Organs; 2010 Nov; 34(11):944-9. PubMed ID: 20946281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic rheology of non-Newtonian liquids.
    Girardo S; Cingolani R; Pisignano D
    Anal Chem; 2007 Aug; 79(15):5856-61. PubMed ID: 17602569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic viscosity of polymers and biopolymers measured by microchip.
    Lee J; Tripathi A
    Anal Chem; 2005 Nov; 77(22):7137-47. PubMed ID: 16285659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel polydimethylsiloxane microfluidic viscometer fabricated using microwire-molding.
    Zou M; Cai S; Zhao Z; Chen L; Zhao Y; Fan X; Chen S
    Rev Sci Instrum; 2015 Oct; 86(10):104302. PubMed ID: 26520971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-shear-rate capillary viscometer for inkjet inks.
    Wang X; Carr WW; Bucknall DG; Morris JF
    Rev Sci Instrum; 2010 Jun; 81(6):065106. PubMed ID: 20590268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrofluidic Circuit-Based Microfluidic Viscometer for Analysis of Newtonian and Non-Newtonian Liquids under Different Temperatures.
    Lee TA; Liao WH; Wu YF; Chen YL; Tung YC
    Anal Chem; 2018 Feb; 90(3):2317-2325. PubMed ID: 29293313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a simple droplet-based microfluidic capillary viscometer for low-viscosity Newtonian fluids.
    DeLaMarre MF; Keyzer A; Shippy SA
    Anal Chem; 2015 May; 87(9):4649-57. PubMed ID: 25825941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A micropillar-based microfluidic viscometer for Newtonian and non-Newtonian fluids.
    Mustafa A; Eser A; Aksu AC; Kiraz A; Tanyeri M; Erten A; Yalcin O
    Anal Chim Acta; 2020 Oct; 1135():107-115. PubMed ID: 33070846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of blood viscosity using a pressure-scanning capillary viscometer.
    Shin S; Ku Y; Park MS; Suh JS
    Clin Hemorheol Microcirc; 2004; 30(3-4):467-70. PubMed ID: 15258389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes.
    Kuang QL; Zhao JC; Niu YH; Zhang J; Wang ZG
    J Phys Chem B; 2008 Aug; 112(33):10234-40. PubMed ID: 18661932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoliter droplet viscometer with additive-free operation.
    Livak-Dahl E; Lee J; Burns MA
    Lab Chip; 2013 Jan; 13(2):297-301. PubMed ID: 23192296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biopolymer microparticle and nanoparticle formation within a microfluidic device.
    Rondeau E; Cooper-White JJ
    Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics for flow cytometric analysis of cells and particles.
    Huh D; Gu W; Kamotani Y; Grotberg JB; Takayama S
    Physiol Meas; 2005 Jun; 26(3):R73-98. PubMed ID: 15798290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates.
    Lee J; Chou TC; Kang D; Kang H; Chen J; Baek KI; Wang W; Ding Y; Carlo DD; Tai YC; Hsiai TK
    Sci Rep; 2017 May; 7(1):1980. PubMed ID: 28512313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheologic measurements on small samples with a new capillary viscometer.
    Reinhart WH; Danoff SJ; Usami S; Chien S
    J Lab Clin Med; 1984 Dec; 104(6):921-31. PubMed ID: 6438260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.