These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 16504314)
1. Application of growth-related sublethal endpoints in ecotoxicological assessments using a harpacticoid copepod. Dahl U; Gorokhova E; Breitholtz M Aquat Toxicol; 2006 May; 77(4):433-8. PubMed ID: 16504314 [TBL] [Abstract][Full Text] [Related]
2. Short-term toxicity tests on the harpacticoid copepod Tisbe battagliai: lethal and reproductive endpoints. Diz FR; Araújo CV; Moreno-Garrido I; Hampel M; Blasco J Ecotoxicol Environ Saf; 2009 Oct; 72(7):1881-6. PubMed ID: 19362371 [TBL] [Abstract][Full Text] [Related]
3. An assessment of three harpacticoid copepod species for use in ecotoxicological testing. Ward DJ; Perez-Landa V; Spadaro DA; Simpson SL; Jolley DF Arch Environ Contam Toxicol; 2011 Oct; 61(3):414-25. PubMed ID: 21305275 [TBL] [Abstract][Full Text] [Related]
4. Food quality effects on copepod growth and development: implications for bioassays in ecotoxicological testing. Dahl U; Lind CR; Gorokhova E; Eklund B; Breitholtz M Ecotoxicol Environ Saf; 2009 Feb; 72(2):351-7. PubMed ID: 18514311 [TBL] [Abstract][Full Text] [Related]
5. The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics. Raisuddin S; Kwok KW; Leung KM; Schlenk D; Lee JS Aquat Toxicol; 2007 Jul; 83(3):161-73. PubMed ID: 17560667 [TBL] [Abstract][Full Text] [Related]
6. Integrating individual ecdysteroid content and growth-related stressor endpoints to assess toxicity in a benthic harpacticoid copepod. Dahl U; Breitholtz M Aquat Toxicol; 2008 Jul; 88(3):191-9. PubMed ID: 18511137 [TBL] [Abstract][Full Text] [Related]
7. Evidence of population genetic effects of long-term exposure to contaminated sediments-a multi-endpoint study with copepods. Gardeström J; Dahl U; Kotsalainen O; Maxson A; Elfwing T; Grahn M; Bengtsson BE; Breitholtz M Aquat Toxicol; 2008 Feb; 86(3):426-36. PubMed ID: 18234358 [TBL] [Abstract][Full Text] [Related]
8. Detecting points as developmental delay based on the life-history development and urosome deformity of the harpacticoid copepod, Tigriopus japonicus sensu lato, following exposure to benzo(a)pyrene. Bang HW; Lee W; Kwak IS Chemosphere; 2009 Sep; 76(10):1435-9. PubMed ID: 19560185 [TBL] [Abstract][Full Text] [Related]
9. Effects of three PBDEs on development, reproduction and population growth rate of the harpacticoid copepod Nitocra spinipes. Breitholtz M; Wollenberger L Aquat Toxicol; 2003 Jun; 64(1):85-96. PubMed ID: 12763669 [TBL] [Abstract][Full Text] [Related]
10. Sediment integrative assessment of the Bay of Cádiz (Spain): an ecotoxicological and chemical approach. Araújo CV; Diz FR; Laiz I; Lubián LM; Blasco J; Moreno-Garrido I Environ Int; 2009 Aug; 35(6):831-41. PubMed ID: 19318227 [TBL] [Abstract][Full Text] [Related]
11. Use of highly sensitive sublethal stress responses in the social amoeba Dictyostelium discoideum for an assessment of freshwater quality. Sforzini S; Dagnino A; Torrielli S; Dondero F; Fenoglio S; Negri A; Boatti L; Viarengo A Sci Total Environ; 2008 Jun; 395(2-3):101-8. PubMed ID: 18342359 [TBL] [Abstract][Full Text] [Related]
12. Performance and sensitivity of rapid sublethal sediment toxicity tests with the amphipod Melita plumulosa and copepod Nitocra spinipes. Simpson SL; Spadaro DA Environ Toxicol Chem; 2011 Oct; 30(10):2326-34. PubMed ID: 21805497 [TBL] [Abstract][Full Text] [Related]
13. Relative sensitivity of hyporheic copepods to chemicals. Di Marzio WD; Castaldo D; Pantani C; Di Cioccio A; Di Lorenzo T; Sáenz ME; Galassi DM Bull Environ Contam Toxicol; 2009 Apr; 82(4):488-91. PubMed ID: 19005609 [TBL] [Abstract][Full Text] [Related]
14. Development and reproduction of the freshwater harpacticoid copepod Attheyella crassa for assessing sediment-associated toxicity. Turesson EU; Stiernström S; Minten J; Adolfsson-Erici M; Bengtsson BE; Breitholtz M Aquat Toxicol; 2007 Jul; 83(3):180-9. PubMed ID: 17512064 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of acute silver toxicity in the euryhaline copepod Acartia tonsa. Pedroso MS; Pinho GL; Rodrigues SC; Bianchini A Aquat Toxicol; 2007 May; 82(3):173-80. PubMed ID: 17374407 [TBL] [Abstract][Full Text] [Related]
16. Potential of the small cyclopoid copepod Paracyclopina nana as an invertebrate model for ecotoxicity testing. Dahms HU; Won EJ; Kim HS; Han J; Park HG; Souissi S; Raisuddin S; Lee JS Aquat Toxicol; 2016 Nov; 180():282-294. PubMed ID: 27770640 [TBL] [Abstract][Full Text] [Related]
17. Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on Calanus finmarchicus and Calanus glacialis (Crustacea: Copepoda). Hansen BH; Altin D; Rørvik SF; Øverjordet IB; Olsen AJ; Nordtug T Sci Total Environ; 2011 Jan; 409(4):704-9. PubMed ID: 21130489 [TBL] [Abstract][Full Text] [Related]
18. Development and application of long-term sublethal whole sediment tests with Arenicola marina and Corophium volutator using Ivermectin as the test compound. Allen YT; Thain JE; Haworth S; Barry J Environ Pollut; 2007 Mar; 146(1):92-9. PubMed ID: 16996183 [TBL] [Abstract][Full Text] [Related]
19. TNT leakage through sediment to water and toxicity to Nitocra spinipes. Ek H; Nilsson E; Birgersson G; Dave G Ecotoxicol Environ Saf; 2007 Jul; 67(3):341-8. PubMed ID: 17141867 [TBL] [Abstract][Full Text] [Related]
20. Effects of short- and long-term exposures to copper on lethal and reproductive endpoints of the harpacticoid copepod Tigriopus fulvus. Biandolino F; Parlapiano I; Faraponova O; Prato E Ecotoxicol Environ Saf; 2018 Jan; 147():327-333. PubMed ID: 28858705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]