These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 1650453)

  • 1. A hammerhead ribozyme allows synthesis of a new form of the Tetrahymena ribozyme homogeneous in length with a 3' end blocked for transesterification.
    Grosshans CA; Cech TR
    Nucleic Acids Res; 1991 Jul; 19(14):3875-80. PubMed ID: 1650453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ; Dávila-Aponte JA; Cech TR
    Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site.
    Herschlag D; Cech TR
    Biochemistry; 1990 Nov; 29(44):10159-71. PubMed ID: 2271645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme.
    Herschlag D
    Biochemistry; 1992 Feb; 31(5):1386-99. PubMed ID: 1736996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the P7 region within the catalytic core of the Tetrahymena ribozyme by employing in vitro selection.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Symp Ser; 2000; (44):197-8. PubMed ID: 12903336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
    Guo F; Gooding AR; Cech TR
    Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
    Forconi M; Sengupta RN; Piccirilli JA; Herschlag D
    Biochemistry; 2010 Mar; 49(12):2753-62. PubMed ID: 20175542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A base triple in the Tetrahymena group I core affects the reaction equilibrium via a threshold effect.
    Karbstein K; Tang KH; Herschlag D
    RNA; 2004 Nov; 10(11):1730-9. PubMed ID: 15496521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1225-31. PubMed ID: 11883948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of pH dependencies of the Tetrahymena ribozyme reactions with RNA 2'-substituted and phosphorothioate substrates reveals a rate-limiting conformational step.
    Herschlag D; Khosla M
    Biochemistry; 1994 May; 33(17):5291-7. PubMed ID: 8172903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Tetrahymena ribozyme acts like an RNA restriction endonuclease.
    Zaug AJ; Been MD; Cech TR
    Nature; 1986 Dec 4-10; 324(6096):429-33. PubMed ID: 3537808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity.
    Young B; Herschlag D; Cech TR
    Cell; 1991 Nov; 67(5):1007-19. PubMed ID: 1959129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro evolution of the hammerhead ribozyme to a purine-specific ribozyme using mutagenic PCR with two nucleotide analogues.
    Kore AR; Vaish NK; Morris JA; Eckstein F
    J Mol Biol; 2000 Sep; 301(5):1113-21. PubMed ID: 10966809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
    Russell R; Herschlag D
    J Mol Biol; 2001 May; 308(5):839-51. PubMed ID: 11352576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis.
    Legault P; Herschlag D; Celander DW; Cech TR
    Nucleic Acids Res; 1992 Dec; 20(24):6613-9. PubMed ID: 1480482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the newly constructed domains that replace P5abc within the Tetrahymena ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    FEBS Lett; 1996 Sep; 394(1):5-8. PubMed ID: 8925926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deteriorated triple-helical scaffold accelerates formation of the Tetrahymena ribozyme active structure.
    Ohki Y; Ikawa Y; Shiraishi H; Inoue T
    FEBS Lett; 2001 Mar; 493(2-3):95-100. PubMed ID: 11287003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translocation of an RNA duplex on a ribozyme.
    Strobel SA; Cech TR
    Nat Struct Biol; 1994 Jan; 1(1):13-7. PubMed ID: 7544680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.