These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16504607)

  • 1. Identification of bilirubin reduction products formed by Clostridium perfringens isolated from human neonatal fecal flora.
    Vítek L; Majer F; Muchová L; Zelenka J; Jirásková A; Branný P; Malina J; Ubik K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Apr; 833(2):149-57. PubMed ID: 16504607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of bilirubin ditaurate by the intestinal bacterium Clostridium perfringens.
    Koníčková R; Jirásková A; Zelenka J; Lešetický L; Štícha M; Vítek L
    Acta Biochim Pol; 2012; 59(2):289-92. PubMed ID: 22540115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal colonization leading to fecal urobilinoid excretion may play a role in the pathogenesis of neonatal jaundice.
    Vítek L; Kotal P; Jirsa M; Malina J; Cerná M; Chmelar D; Fevery J
    J Pediatr Gastroenterol Nutr; 2000 Mar; 30(3):294-8. PubMed ID: 10749414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of intestinal microflora on serum bilirubin levels.
    Vítek L; Zelenka J; Zadinová M; Malina J
    J Hepatol; 2005 Feb; 42(2):238-43. PubMed ID: 15664250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of conjugated and unconjugated bilirubin in bile. II. A new thin-layer chromatographic method.
    Boonyapisit ST; Trotman BW; Ostrow JD; Olivieri PJ; Gallo D
    J Lab Clin Med; 1976 Nov; 88(5):857-63. PubMed ID: 978048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The in vitro conversion of bile pigments to the urobilinoids by a rat clostridia species as compared with the human fecal flora. 3. Natural d-urobilin, synthetic i-urobilin, and synthetic i-urobilinogen.
    Moscowitz A; Weimer M; Lightner DA; Petryka ZJ; Davis E; Watson CJ
    Biochem Med; 1970 Sep; 4(2):149-64. PubMed ID: 5167445
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolism of 7-nitrobenz[a]anthracene by intestinal microflora.
    Morehead MC; Franklin W; Fu PP; Evans FE; Heinze TM; Cerniglia CE
    J Toxicol Environ Health; 1994 Nov; 43(3):369-80. PubMed ID: 7966445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reduction of bile pigments by faecal and intestinal bacteria.
    Fahmy K; Gray CH; Nicholson DC
    Biochim Biophys Acta; 1972 Mar; 264(1):85-97. PubMed ID: 4553810
    [No Abstract]   [Full Text] [Related]  

  • 9. Changes in the microflora of man during long-term confinement.
    Shilov VM; Lizko NN; Borisova OK; Prokhorov VY
    Life Sci Space Res; 1971; 9():43-9. PubMed ID: 11942343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of bacterial beta-glucuronidase in human bile: an in vitro study.
    Leung JW; Liu YL; Leung PS; Chan RC; Inciardi JF; Cheng AF
    Gastrointest Endosc; 2001 Sep; 54(3):346-50. PubMed ID: 11522976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and properties of conjugated bilirubin from bile.
    Ostrow JD; Murphy NH
    Biochem J; 1970 Nov; 120(2):311-27. PubMed ID: 5493854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Metabolism of bile pigments in the intestine].
    Corongiu B; Roth M
    Ann Biol Clin (Paris); 1990; 48(1):9-15. PubMed ID: 2306027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of amphetamine from its nitro analogue by anaerobic intestinal bacteria.
    Mori A; Ishiyama I; Akita H; Suzuki K; Mitsuoka T; Oishi T
    Xenobiotica; 1990 Jun; 20(6):629-34. PubMed ID: 2219956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The fecal pigment (author's transl)].
    von Dobeneck H
    J Clin Chem Clin Biochem; 1976 Mar; 14(3):145-50. PubMed ID: 932648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urobilinogen-i is a major derivative of bilirubin in bile of homozygous Gunn rats.
    Kotal P; Fevery J
    Biochem J; 1990 May; 268(1):181-5. PubMed ID: 2140507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time multiplex PCR assay for rapid detection and toxintyping of Clostridium perfringens toxin producing strains in feces of dairy cattle.
    Gurjar AA; Hegde NV; Love BC; Jayarao BM
    Mol Cell Probes; 2008 Apr; 22(2):90-5. PubMed ID: 17890052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilirubin degradation by uncoupled cytochrome P450. Comparison with a chemical oxidation system and characterization of the products by high-performance liquid chromatography/electrospray ionization mass spectrometry.
    De Matteis F; Lord GA; Kee Lim C; Pons N
    Rapid Commun Mass Spectrom; 2006; 20(8):1209-17. PubMed ID: 16541400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The identification and characterization of Clostridium perfringens by real-time PCR, location of enterotoxin gene, and heat resistance.
    Grant KA; Kenyon S; Nwafor I; Plowman J; Ohai C; Halford-Maw R; Peck MW; McLauchlin J
    Foodborne Pathog Dis; 2008 Oct; 5(5):629-39. PubMed ID: 18681798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Experimental investigations into the effect of Escherichia coli and Clostridium perfringens on the steroid estrone].
    Schlenker G; Müller W; Birkelbach C; Glatzel P
    Berl Munch Tierarztl Wochenschr; 1999 Jan; 112(1):14-7. PubMed ID: 10028726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry.
    Lee S; Young NL; Whetstone PA; Cheal SM; Benner WH; Lebrilla CB; Meares CF
    J Proteome Res; 2006 Mar; 5(3):539-47. PubMed ID: 16512668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.