These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 16505585)
1. Immunohistochemical detection of neurotrophin-3 and -4, and their receptors in mouse taste bud cells. Takeda M; Suzuki Y; Obara N; Tsunekawa H Arch Histol Cytol; 2005 Dec; 68(5):393-403. PubMed ID: 16505585 [TBL] [Abstract][Full Text] [Related]
2. Expression of GDNF and GFR alpha 1 in mouse taste bud cells. Takeda M; Suzuki Y; Obara N; Uchida N; Kawakoshi K J Comp Neurol; 2004 Nov; 479(1):94-102. PubMed ID: 15389609 [TBL] [Abstract][Full Text] [Related]
3. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster. Ganchrow D; Ganchrow JR; Verdin-Alcazar M; Whitehead MC J Comp Neurol; 2003 Jan; 455(1):11-24. PubMed ID: 12454993 [TBL] [Abstract][Full Text] [Related]
4. Expression of BDNF and TrkB in mouse taste buds after denervation and in circumvallate papillae during development. Uchida N; Kanazawa M; Suzuki Y; Takeda M Arch Histol Cytol; 2003 Mar; 66(1):17-25. PubMed ID: 12703550 [TBL] [Abstract][Full Text] [Related]
5. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster after sensory denervation. Ganchrow D; Ganchrow JR; Verdin-Alcazar M; Whitehead MC J Comp Neurol; 2003 Jan; 455(1):25-39. PubMed ID: 12454994 [TBL] [Abstract][Full Text] [Related]
6. Formation of a full complement of cranial proprioceptors requires multiple neurotrophins. Fan G; Copray S; Huang EJ; Jones K; Yan Q; Walro J; Jaenisch R; Kucera J Dev Dyn; 2000 Jun; 218(2):359-70. PubMed ID: 10842362 [TBL] [Abstract][Full Text] [Related]
8. Detection of neurotrophic factors in taste buds by laser capture microdissection, immunohistochemistry, and in situ hybridization. Suzuki Y; Mizoguchi I; Uchida N Arch Histol Cytol; 2007 Jul; 70(2):117-26. PubMed ID: 17827669 [TBL] [Abstract][Full Text] [Related]
9. Pacinian corpuscle development involves multiple Trk signaling pathways. Sedý J; Szeder V; Walro JM; Ren ZG; Nanka O; Tessarollo L; Sieber-Blum M; Grim M; Kucera J Dev Dyn; 2004 Nov; 231(3):551-63. PubMed ID: 15376326 [TBL] [Abstract][Full Text] [Related]
10. Effects of glossopharyngeal nerve section on the expression of neurotrophins and their receptors in lingual taste buds of adult mice. Yee C; Bartel DL; Finger TE J Comp Neurol; 2005 Oct; 490(4):371-90. PubMed ID: 16127713 [TBL] [Abstract][Full Text] [Related]
11. Embryonic geniculate ganglion neurons in culture have neurotrophin-specific electrophysiological properties. Al-Hadlaq SM; Bradley RM; MacCallum DK; Mistretta CM Neuroscience; 2003; 118(1):145-59. PubMed ID: 12676146 [TBL] [Abstract][Full Text] [Related]
12. Expression of neurotrophins and their receptors in peripheral lung cells of mice. Hikawa S; Kobayashi H; Hikawa N; Kusakabe T; Hiruma H; Takenaka T; Tomita T; Kawakami T Histochem Cell Biol; 2002 Jul; 118(1):51-8. PubMed ID: 12122447 [TBL] [Abstract][Full Text] [Related]
13. NT4/5 mutant mice have deficiency in gustatory papillae and taste bud formation. Liebl DJ; Mbiene JP; Parada LF Dev Biol; 1999 Sep; 213(2):378-89. PubMed ID: 10479455 [TBL] [Abstract][Full Text] [Related]
14. Neurotrophin 3 and its receptor TrkC immunoreactivity in glucagon cells of buffalo pancreas. Lucini C; Costagliola C; Borzacchiello G; Castaldo L Anat Histol Embryol; 2003 Aug; 32(4):253-6. PubMed ID: 12919079 [TBL] [Abstract][Full Text] [Related]
15. Expression of glial cell line-derived neurotrophic factor (GDNF) and GDNF family receptor alpha1 in mouse taste bud cells after denervation. Takeda M; Suzuki Y; Obara N; Uchida N; Kawakoshi K Anat Sci Int; 2005 Jun; 80(2):105-10. PubMed ID: 15960316 [TBL] [Abstract][Full Text] [Related]
16. Differential expression of brain-derived neurotrophic factor and neurotrophin 3 mRNA in lingual papillae and taste buds indicates roles in gustatory and somatosensory innervation. Nosrat CA; Ebendal T; Olson L J Comp Neurol; 1996 Dec; 376(4):587-602. PubMed ID: 8978472 [TBL] [Abstract][Full Text] [Related]
17. Neurotrophin regulation of the developing nervous system: analyses of knockout mice. Conover JC; Yancopoulos GD Rev Neurosci; 1997; 8(1):13-27. PubMed ID: 9402642 [TBL] [Abstract][Full Text] [Related]
18. Role of neurotropins in rat embryonic testis morphogenesis (cord formation). Levine E; Cupp AS; Skinner MK Biol Reprod; 2000 Jan; 62(1):132-42. PubMed ID: 10611077 [TBL] [Abstract][Full Text] [Related]
19. "Type III" cells of rat taste buds: immunohistochemical and ultrastructural studies of neuron-specific enolase, protein gene product 9.5, and serotonin. Yee CL; Yang R; Böttger B; Finger TE; Kinnamon JC J Comp Neurol; 2001 Nov; 440(1):97-108. PubMed ID: 11745610 [TBL] [Abstract][Full Text] [Related]
20. BDNF is required for the normal development of taste neurons in vivo. Zhang C; Brandemihl A; Lau D; Lawton A; Oakley B Neuroreport; 1997 Mar; 8(4):1013-7. PubMed ID: 9141083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]