These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16506018)

  • 1. Influence of a superficial tangential zone over repairing cartilage defects: implications for tissue engineering.
    Owen JR; Wayne JS
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):102-10. PubMed ID: 16506018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact models of repaired articular surfaces: influence of loading conditions and the superficial tangential zone.
    Owen JR; Wayne JS
    Biomech Model Mechanobiol; 2011 Jul; 10(4):461-71. PubMed ID: 20700624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage.
    Federico S; Grillo A; La Rosa G; Giaquinta G; Herzog W
    J Biomech; 2005 Oct; 38(10):2008-18. PubMed ID: 16084201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional tissue engineering of chondral and osteochondral constructs.
    Lima EG; Mauck RL; Han SH; Park S; Ng KW; Ateshian GA; Hung CT
    Biorheology; 2004; 41(3-4):577-90. PubMed ID: 15299288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage.
    Klein TJ; Chaudhry M; Bae WC; Sah RL
    J Biomech; 2007; 40(1):182-90. PubMed ID: 16387310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.
    Han SK; Federico S; Grillo A; Giaquinta G; Herzog W
    Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the constitutive properties of native, tissue engineered, and degenerated articular cartilage.
    Seifzadeh A; Oguamanam DC; Papini M
    Clin Biomech (Bristol, Avon); 2012 Oct; 27(8):852-8. PubMed ID: 22578740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of repair tissue maturation on the response to oscillatory compression in a cartilage defect repair model.
    Hunter CJ; Levenston ME
    Biorheology; 2002; 39(1-2):79-88. PubMed ID: 12082270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic hydraulic permeability in compressed articular cartilage.
    Reynaud B; Quinn TM
    J Biomech; 2006; 39(1):131-7. PubMed ID: 16271597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive properties of cartilage-like tissues repaired in vivo with scaffold-free, tissue engineered constructs.
    Katakai D; Imura M; Ando W; Tateishi K; Yoshikawa H; Nakamura N; Fujie H
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):110-6. PubMed ID: 18990475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression.
    Guo H; Maher SA; Torzilli PA
    J Biomech; 2015 Jan; 48(1):166-70. PubMed ID: 25465194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression.
    Shirazi R; Shirazi-Adl A; Hurtig M
    J Biomech; 2008 Dec; 41(16):3340-8. PubMed ID: 19022449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the anisotropy and inhomogeneity of permeability in articular cartilage.
    Federico S; Herzog W
    Biomech Model Mechanobiol; 2008 Oct; 7(5):367-78. PubMed ID: 17619089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cartilage collagen matrix reorientation and displacement in response to surface loading.
    Moger CJ; Arkill KP; Barrett R; Bleuet P; Ellis RE; Green EM; Winlove CP
    J Biomech Eng; 2009 Mar; 131(3):031008. PubMed ID: 19154067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.
    Julkunen P; Korhonen RK; Herzog W; Jurvelin JS
    Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic loading moves the peak stress to the cartilage surface in a biphasic model with isotropic solid phase properties.
    Warner MD; Taylor WR; Clift SE
    Med Eng Phys; 2004 Apr; 26(3):247-9. PubMed ID: 14984846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair.
    Kelly DJ; Prendergast PJ
    Tissue Eng; 2006 Sep; 12(9):2509-19. PubMed ID: 16995784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.