These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16506058)

  • 1. Chronic neural adaptation induced by long-term resistance training in humans.
    del Olmo MF; Reimunde P; Viana O; Acero RM; Cudeiro J
    Eur J Appl Physiol; 2006 Apr; 96(6):722-8. PubMed ID: 16506058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in supraspinal and spinal excitability during various force outputs of the biceps brachii in chronic- and non-resistance trained individuals.
    Pearcey GE; Power KE; Button DC
    PLoS One; 2014; 9(5):e98468. PubMed ID: 24875495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sites of neural adaptation induced by resistance training in humans.
    Carroll TJ; Riek S; Carson RG
    J Physiol; 2002 Oct; 544(Pt 2):641-52. PubMed ID: 12381833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.
    Bachasson D; Temesi J; Gruet M; Yokoyama K; Rupp T; Millet GY; Verges S
    Neuroscience; 2016 Feb; 314():125-33. PubMed ID: 26642805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic resistance training enhances the spinal excitability of the biceps brachii in the non-dominant arm at moderate contraction intensities.
    Philpott DT; Pearcey GE; Forman D; Power KE; Button DC
    Neurosci Lett; 2015 Jan; 585():12-6. PubMed ID: 25445370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticospinal excitability of the biceps brachii is shoulder position dependent.
    Collins BW; Cadigan EWJ; Stefanelli L; Button DC
    J Neurophysiol; 2017 Dec; 118(6):3242-3251. PubMed ID: 28855295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanomyographic response to transcranial magnetic stimulation from biceps brachii and during transcutaneous electrical nerve stimulation on extensor carpi radialis.
    Reza MF; Ikoma K; Chuma T; Mano Y
    J Neurosci Methods; 2005 Dec; 149(2):164-71. PubMed ID: 16026847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurophysiological responses after short-term strength training of the biceps brachii muscle.
    Kidgell DJ; Stokes MA; Castricum TJ; Pearce AJ
    J Strength Cond Res; 2010 Nov; 24(11):3123-32. PubMed ID: 20881507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticospinal properties following short-term strength training of an intrinsic hand muscle.
    Kidgell DJ; Pearce AJ
    Hum Mov Sci; 2010 Oct; 29(5):631-41. PubMed ID: 20400192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G; Taylor JL; Gandevia SC
    J Physiol; 2003 Sep; 551(Pt 2):661-71. PubMed ID: 12909682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in supraspinal and spinal excitability of the biceps brachii following brief, non-fatiguing submaximal contractions of the elbow flexors in resistance-trained males.
    Aboodarda SJ; Copithorne DB; Pearcey GEP; Button DC; Power KE
    Neurosci Lett; 2015 Oct; 607():66-71. PubMed ID: 26415709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
    Abdelmoula A; Baudry S; Duchateau J
    Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered responses of human elbow flexors to peripheral-nerve and cortical stimulation during a sustained maximal voluntary contraction.
    Taylor JL; Butler JE; Gandevia SC
    Exp Brain Res; 1999 Jul; 127(1):108-15. PubMed ID: 10424420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of strength training on the force of twitches evoked by corticospinal stimulation in humans.
    Carroll TJ; Barton J; Hsu M; Lee M
    Acta Physiol (Oxf); 2009 Oct; 197(2):161-73. PubMed ID: 19392872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unilateral elbow flexion fatigue modulates corticospinal responsiveness in non-fatigued contralateral biceps brachii.
    Aboodarda SJ; Šambaher N; Behm DG
    Scand J Med Sci Sports; 2016 Nov; 26(11):1301-1312. PubMed ID: 26633736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-interval intracortical inhibition of the biceps brachii in chronic-resistance versus non-resistance-trained individuals.
    Lahouti B; Lockyer EJ; Wiseman S; Power KE; Button DC
    Exp Brain Res; 2019 Nov; 237(11):3023-3032. PubMed ID: 31529168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles.
    Zijdewind I; Butler JE; Gandevia SC; Taylor JL
    Exp Brain Res; 2006 Nov; 175(3):526-35. PubMed ID: 16924489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor skill training and strength training are associated with different plastic changes in the central nervous system.
    Jensen JL; Marstrand PC; Nielsen JB
    J Appl Physiol (1985); 2005 Oct; 99(4):1558-68. PubMed ID: 15890749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcranial magnetic stimulation during resistance training of the tibialis anterior muscle.
    Griffin L; Cafarelli E
    J Electromyogr Kinesiol; 2007 Aug; 17(4):446-52. PubMed ID: 16891123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.