BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16506509)

  • 1. Role of phenanthrene in rhamnolipid production by P. putida in different media.
    Martínez-Toledo A; Ríos-Leal E; Vázquez-Duhalt R; González-Chávez Mdel C; Esparza-García JF; Rodríguez-Vázquez R
    Environ Technol; 2006 Feb; 27(2):137-42. PubMed ID: 16506509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene.
    Shin KH; Kim KW; Seagren EA
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):336-43. PubMed ID: 15309342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida.
    Cha M; Lee N; Kim M; Kim M; Lee S
    Bioresour Technol; 2008 May; 99(7):2192-9. PubMed ID: 17611103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2.
    Chen SY; Wei YH; Chang JS
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):67-74. PubMed ID: 17457541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media.
    Amézcua-Vega C; Poggi-Varaldo HM; Esparza-García F; Ríos-Leal E; Rodríguez-Vázquez R
    Bioresour Technol; 2007 Jan; 98(1):237-40. PubMed ID: 16413180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of surfactants, dispersion and temperature on solubility and biodegradation of phenanthrene in aqueous media.
    Pantsyrnaya T; Blanchard F; Delaunay S; Goergen JL; Guédon E; Guseva E; Boudrant J
    Chemosphere; 2011 Mar; 83(1):29-33. PubMed ID: 21324508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment.
    An CJ; Huang GH; Wei J; Yu H
    Water Res; 2011 Nov; 45(17):5501-10. PubMed ID: 21890166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY; Lu WB; Wei YH; Chen WM; Chang JS
    Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries.
    Gottfried A; Singhal N; Elliot R; Swift S
    Appl Microbiol Biotechnol; 2010 May; 86(5):1563-71. PubMed ID: 20146061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production, functional stability, and effect of rhamnolipid biosurfactant from Klebsiella sp. on phenanthrene degradation in various medium systems.
    Ahmad Z; Zhang X; Imran M; Zhong H; Andleeb S; Zulekha R; Liu G; Ahmad I; Coulon F
    Ecotoxicol Environ Saf; 2021 Jan; 207():111514. PubMed ID: 33254394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils.
    Raza ZA; Khan MS; Khalid ZM; Rehman A
    Biotechnol Lett; 2006 Oct; 28(20):1623-31. PubMed ID: 16955358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source.
    George S; Jayachandran K
    Appl Biochem Biotechnol; 2009 Sep; 158(3):694-705. PubMed ID: 18716921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxic effect of biosurfactant addition on the biodegradation of phenanthrene.
    Shin KH; Ahn Y; Kim KW
    Environ Toxicol Chem; 2005 Nov; 24(11):2768-74. PubMed ID: 16398112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhamnolipid morphology and phenanthrene solubility at different pH values.
    Shin KH; Kim KW; Kim JY; Lee KE; Han SS
    J Environ Qual; 2008; 37(2):509-14. PubMed ID: 18268315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992.
    Silva SN; Farias CB; Rufino RD; Luna JM; Sarubbo LA
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):174-83. PubMed ID: 20417068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037.
    Tecon R; van der Meer JR
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1131-9. PubMed ID: 19730847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp.
    Reddy MS; Naresh B; Leela T; Prashanthi M; Madhusudhan NCh; Dhanasri G; Devi P
    Bioresour Technol; 2010 Oct; 101(20):7980-3. PubMed ID: 20627713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida.
    Annadurai G; Ling LY; Lee JF
    J Hazard Mater; 2008 Feb; 151(1):171-8. PubMed ID: 17618738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene.
    Kahraman H; Erenler SO
    Prikl Biokhim Mikrobiol; 2012; 48(2):212-7. PubMed ID: 22586915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.