These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1650672)

  • 1. Evidence endogenous interferon production contributed to the lack of ocular virulence of an HSV intertypic recombinant.
    Lausch RN; Su YH; Ritchie M; Oakes JE
    Curr Eye Res; 1991; 10 Suppl():39-45. PubMed ID: 1650672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocular avirulence of a herpes simplex virus type 1 strain is associated with heightened sensitivity to alpha/beta interferon.
    Su YH; Oakes JE; Lausch RN
    J Virol; 1990 May; 64(5):2187-92. PubMed ID: 2157880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Failure of intertypic recombinant constructed from HSV-1 x HSV-2 virulent parents to induce ocular pathology.
    Lausch RN; Lee JD; Oakes JE
    Curr Eye Res; 1987 Jan; 6(1):27-32. PubMed ID: 3030649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the genetic region coding for herpes simplex virus resistance to mouse interferon alpha/beta.
    Su YH; Oakes JE; Lausch RN
    J Gen Virol; 1993 Nov; 74 ( Pt 11)():2325-32. PubMed ID: 8245849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that the gene for herpes simplex virus type 1 DNA polymerase accounts for the capacity of an intertypic recombinant to spread from eye to central nervous system.
    Day SP; Lausch RN; Oakes JE
    Virology; 1988 Mar; 163(1):166-73. PubMed ID: 2831653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The herpes simplex virus ribonucleotide reductase is required for ocular virulence.
    Brandt CR; Kintner RL; Pumfery AM; Visalli RJ; Grau DR
    J Gen Virol; 1991 Sep; 72 ( Pt 9)():2043-9. PubMed ID: 1654368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide sequences responsible for the inability of a herpes simplex virus type 2 strain to grow in human lymphocytes are identical to those responsible for its inability to grow in mouse tissues following ocular infection.
    Lausch RN; Yeung KC; Miller JZ; Oakes JE
    Virology; 1990 Jun; 176(2):319-28. PubMed ID: 2161143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Herpes simplex virus stromal keratitis is not titer-dependent and does not correlate with neurovirulence.
    Grau DR; Visalli RJ; Brandt CR
    Invest Ophthalmol Vis Sci; 1989 Dec; 30(12):2474-80. PubMed ID: 2556353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interferon production and sensitivity of rabbit corneal epithelial and stromal cells.
    Taylor JL; O'Brien WJ
    Invest Ophthalmol Vis Sci; 1985 Nov; 26(11):1502-8. PubMed ID: 2997072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenously produced interferon alpha protects mice from herpes simplex virus type 1 corneal disease.
    Hendricks RL; Weber PC; Taylor JL; Koumbis A; Tumpey TM; Glorioso JC
    J Gen Virol; 1991 Jul; 72 ( Pt 7)():1601-10. PubMed ID: 1649898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Herpes simplex virus type 1 DNA sequences which direct spread of virus from cornea to central nervous system.
    Oakes JE; Gray WL; Lausch RN
    Virology; 1986 Apr; 150(2):513-7. PubMed ID: 3008422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed infection with herpes simplex virus type 1 generates recombinants with increased ocular and neurovirulence.
    Brandt CR; Grau DR
    Invest Ophthalmol Vis Sci; 1990 Nov; 31(11):2214-23. PubMed ID: 2173682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of NK cells in mice following corneal infection with herpes simplex virus type-1.
    Brandt CR; Salkowski CA
    Invest Ophthalmol Vis Sci; 1992 Jan; 33(1):113-20. PubMed ID: 1370438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide sequences important in DNA replication are responsible for differences in the capacity of two herpes simplex virus strains to spread from cornea to central nervous system.
    Day SP; Lausch RN; Oakes JE
    Curr Eye Res; 1987 Jan; 6(1):19-26. PubMed ID: 3030643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of HSV nucleic acid sequences in the cornea during acute and latent ocular disease.
    Sabbaga EM; Pavan-Langston D; Bean KM; Dunkel EC
    Exp Eye Res; 1988 Oct; 47(4):545-53. PubMed ID: 2846336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interferon production in inbred mice during herpetic eye disease.
    Taylor JL; O'Brien WJ
    Curr Eye Res; 1987 Jan; 6(1):259-64. PubMed ID: 2435457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Previous immunization of mice with herpes simplex virus type-1 strain MP protects against secondary corneal infection.
    Sandstrom IK; Foster CS; Wells PA; Knipe D; Caron L; Greene MI
    Clin Immunol Immunopathol; 1986 Aug; 40(2):326-34. PubMed ID: 3013476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunobiology of Langerhans cells on the ocular surface. II. Role of central corneal Langerhans cells in stromal keratitis following experimental HSV-1 infection in mice.
    McLeish W; Rubsamen P; Atherton SS; Streilein JW
    Reg Immunol; 1989; 2(4):236-43. PubMed ID: 2561960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution of HSV corneal infection in the absence of delayed-type hypersensitivity.
    Lausch RN; Kleinschradt WR; Monteiro C; Kayes SG; Oakes JE
    Invest Ophthalmol Vis Sci; 1985 Nov; 26(11):1509-15. PubMed ID: 2997073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical role of corneal Langerhans cells in the CD4- but not CD8-mediated immunopathology in herpes simplex virus-1-infected mouse corneas.
    Hendricks RL; Janowicz M; Tumpey TM
    J Immunol; 1992 Apr; 148(8):2522-9. PubMed ID: 1313845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.