These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 16506744)

  • 1. Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires.
    Panda AB; Glaspell G; El-Shall MS
    J Am Chem Soc; 2006 Mar; 128(9):2790-1. PubMed ID: 16506744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switchable assembly of ultra narrow CdS nanowires and nanorods.
    Acharya S; Patla I; Kost J; Efrima S; Golan Y
    J Am Chem Soc; 2006 Jul; 128(29):9294-5. PubMed ID: 16848440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, assembly, and optical properties of shape- and phase-controlled ZnSe nanostructures.
    Panda AB; Acharya S; Efrima S; Golan Y
    Langmuir; 2007 Jan; 23(2):765-70. PubMed ID: 17209631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium selenide quantum wires and the transition from 3D to 2D confinement.
    Yu H; Li J; Loomis RA; Gibbons PC; Wang LW; Buhro WE
    J Am Chem Soc; 2003 Dec; 125(52):16168-9. PubMed ID: 14692740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties.
    Morber JR; Ding Y; Haluska MS; Li Y; Liu JP; Wang ZL; Snyder RL
    J Phys Chem B; 2006 Nov; 110(43):21672-9. PubMed ID: 17064124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile low-temperature synthesis of ultralong monodisperse ZnSe quantum wires with the assistance of Ag2S.
    Huang Z; Pan L; Zhong P; Li M; Tian F; Zhang C
    Chemistry; 2013 Jan; 19(5):1732-9. PubMed ID: 23203684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods.
    Hewa-Kasakarage NN; Kirsanova M; Nemchinov A; Schmall N; El-Khoury PZ; Tarnovsky AN; Zamkov M
    J Am Chem Soc; 2009 Jan; 131(3):1328-34. PubMed ID: 19119809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms.
    Menagen G; Macdonald JE; Shemesh Y; Popov I; Banin U
    J Am Chem Soc; 2009 Dec; 131(47):17406-11. PubMed ID: 19894717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.
    Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA
    Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots.
    Qian H; Qiu X; Li L; Ren J
    J Phys Chem B; 2006 May; 110(18):9034-40. PubMed ID: 16671712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra narrow PbS nanorods with intense fluorescence.
    Acharya S; Gautam UK; Sasaki T; Bando Y; Golan Y; Ariga K
    J Am Chem Soc; 2008 Apr; 130(14):4594-5. PubMed ID: 18338893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc oxide quantum rods.
    Yin M; Gu Y; Kuskovsky IL; Andelman T; Zhu Y; Neumark GF; O'Brien S
    J Am Chem Soc; 2004 May; 126(20):6206-7. PubMed ID: 15149198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photophysical properties of biologically compatible CdSe quantum dot structures.
    Kloepfer JA; Bradforth SE; Nadeau JL
    J Phys Chem B; 2005 May; 109(20):9996-10003. PubMed ID: 16852208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures.
    Shieh F; Saunders AE; Korgel BA
    J Phys Chem B; 2005 May; 109(18):8538-42. PubMed ID: 16852005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directing semiconductor nanorod assembly into 1D or 2D supercrystals by altering the surface charge.
    Singh A; Gunning RD; Sanyal A; Ryan KM
    Chem Commun (Camb); 2010 Oct; 46(38):7193-5. PubMed ID: 20717602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property.
    Yao WT; Yu SH; Liu SJ; Chen JP; Liu XM; Li FQ
    J Phys Chem B; 2006 Jun; 110(24):11704-10. PubMed ID: 16800466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvothermal synthesis and photoluminescent properties of ZnS/cyclohexylamine: inorganic-organic hybrid semiconductor nanowires.
    Fan L; Song H; Zhao H; Pan G; Yu H; Bai X; Li S; Lei Y; Dai Q; Qin R; Wang T; Dong B; Zheng Z; Ren X
    J Phys Chem B; 2006 Jul; 110(26):12948-53. PubMed ID: 16805597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of the morphology of semiconductor-based nanostructures from core-shell nanoparticles to nanocables: the case of CdSe/SiO(2).
    Wang Z; Lu Q; Kong M; Zhang L
    Chemistry; 2007; 13(5):1463-70. PubMed ID: 17086562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CdS/Cyclohexylamine inorganic-organic hybrid semiconductor nanofibers with strong quantum confinement effect.
    Fan L; Song H; Zhao H; Pan G; Liu L; Dong B; Wang F; Bai X; Qin R; Kong X; Ren X
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3914-20. PubMed ID: 19049150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of colloidal ternary ZnCdSe semiconductor nanorods.
    Lee H; Holloway PH; Yang H; Hardison L; Kleiman VD
    J Chem Phys; 2006 Oct; 125(16):164711. PubMed ID: 17092124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.