BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 16506777)

  • 1. The deacylation mechanism of AmpC beta-lactamase at ultrahigh resolution.
    Chen Y; Minasov G; Roth TA; Prati F; Shoichet BK
    J Am Chem Soc; 2006 Mar; 128(9):2970-6. PubMed ID: 16506777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Re-examining the role of Lys67 in class C beta-lactamase catalysis.
    Chen Y; McReynolds A; Shoichet BK
    Protein Sci; 2009 Mar; 18(3):662-9. PubMed ID: 19241376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog.
    Lobkovsky E; Billings EM; Moews PC; Rahil J; Pratt RF; Knox JR
    Biochemistry; 1994 Jun; 33(22):6762-72. PubMed ID: 8204611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical study on the substrate deacylation mechanism of class C beta-lactamase.
    Hata M; Tanaka Y; Fujii Y; Neya S; Hoshino T
    J Phys Chem B; 2005 Aug; 109(33):16153-60. PubMed ID: 16853052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase.
    Powers RA; Blázquez J; Weston GS; Morosini MI; Baquero F; Shoichet BK
    Protein Sci; 1999 Nov; 8(11):2330-7. PubMed ID: 10595535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based approach for binding site identification on AmpC beta-lactamase.
    Powers RA; Shoichet BK
    J Med Chem; 2002 Jul; 45(15):3222-34. PubMed ID: 12109906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the acylation mechanism of class C beta-lactamase: pKa calculation, molecular dynamics simulation and quantum mechanical calculation.
    Sharma S; Bandyopadhyay P
    J Mol Model; 2012 Feb; 18(2):481-92. PubMed ID: 21541744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design.
    Usher KC; Blaszczak LC; Weston GS; Shoichet BK; Remington SJ
    Biochemistry; 1998 Nov; 37(46):16082-92. PubMed ID: 9819201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of proton transfer in class A β-lactamase catalysis and inhibition by avibactam.
    Pemberton OA; Noor RE; Kumar M V V; Sanishvili R; Kemp MT; Kearns FL; Woodcock HL; Gelis I; Chen Y
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5818-5825. PubMed ID: 32123084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases.
    Chen Y; Shoichet B; Bonnet R
    J Am Chem Soc; 2005 Apr; 127(15):5423-34. PubMed ID: 15826180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase.
    Weston GS; Blázquez J; Baquero F; Shoichet BK
    J Med Chem; 1998 Nov; 41(23):4577-86. PubMed ID: 9804697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of residues Tyr150, Glu272, and His314 in class C beta-lactamases.
    Dubus A; Ledent P; Lamotte-Brasseur J; Frère JM
    Proteins; 1996 Aug; 25(4):473-85. PubMed ID: 8865342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of "bora-penicilloates" with serine β-lactamases and DD-peptidases.
    Dzhekieva L; Adediran SA; Pratt RF
    Biochemistry; 2014 Oct; 53(41):6530-8. PubMed ID: 25302576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of proton relay and product release by Class A β-lactamase at ultrahigh resolution.
    Lewandowski EM; Lethbridge KG; Sanishvili R; Skiba J; Kowalski K; Chen Y
    FEBS J; 2018 Jan; 285(1):87-100. PubMed ID: 29095570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic mechanism of class A beta-lactamase. I. The role of Glu166 and Serl30 in the deacylation reaction.
    Hata M; Fujii Y; Ishii M; Hoshino T; Tsuda M
    Chem Pharm Bull (Tokyo); 2000 Apr; 48(4):447-53. PubMed ID: 10783059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of class C beta-lactamase from Citrobacter freundii: insights into the base catalyst for acylation.
    Díaz N; Suárez D; Sordo TL
    Biochemistry; 2006 Jan; 45(2):439-51. PubMed ID: 16401074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, Function of Serine and Metallo-β-lactamases and their Inhibitors.
    Salahuddin P; Kumar A; Khan AU
    Curr Protein Pept Sci; 2018; 19(2):130-144. PubMed ID: 28745223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hydrolytic water molecule of Class A β-lactamase relies on the acyl-enzyme intermediate ES* for proper coordination and catalysis.
    He Y; Lei J; Pan X; Huang X; Zhao Y
    Sci Rep; 2020 Jun; 10(1):10205. PubMed ID: 32576842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic analysis of TEM1 beta-lactamase: effect of substrate binding, steep potential gradients and consequences of site-directed mutations.
    Swarén P; Maveyraud L; Guillet V; Masson JM; Mourey L; Samama JP
    Structure; 1995 Jun; 3(6):603-13. PubMed ID: 8590021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate deacylation mechanisms of serine-beta-lactamases.
    Hata M; Fujii Y; Tanaka Y; Ishikawa H; Ishii M; Neya S; Tsuda M; Hoshino T
    Biol Pharm Bull; 2006 Nov; 29(11):2151-9. PubMed ID: 17077507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.