These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 16506785)

  • 1. Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo.
    Yang Z; Liang G; Wang L; Xu B
    J Am Chem Soc; 2006 Mar; 128(9):3038-43. PubMed ID: 16506785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using "On/Off" (19)F NMR/Magnetic Resonance Imaging Signals to Sense Tyrosine Kinase/Phosphatase Activity in Vitro and in Cell Lysates.
    Zheng Z; Sun H; Hu C; Li G; Liu X; Chen P; Cui Y; Liu J; Wang J; Liang G
    Anal Chem; 2016 Mar; 88(6):3363-8. PubMed ID: 26901415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical reinforcement of a supramolecular hydrogel comprising an artificial glyco-lipid through supramolecular copolymerization.
    Ikeda M; Shimizu Y; Matsumoto S; Komatsu H; Tamaru S; Takigawa T; Hamachi I
    Macromol Biosci; 2008 Nov; 8(11):1019-25. PubMed ID: 18576398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A redox responsive, fluorescent supramolecular metallohydrogel consists of nanofibers with single-molecule width.
    Zhang Y; Zhang B; Kuang Y; Gao Y; Shi J; Zhang XX; Xu B
    J Am Chem Soc; 2013 Apr; 135(13):5008-11. PubMed ID: 23521132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-glucosamine-based supramolecular hydrogels to improve wound healing.
    Yang Z; Liang G; Ma M; Abbah AS; Lu WW; Xu B
    Chem Commun (Camb); 2007 Feb; (8):843-5. PubMed ID: 17308650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low molecular weight hydrogels derived from urea based-bolaamphiphiles as new injectable biomaterials.
    Ramin MA; Latxague L; Sindhu KR; Chassande O; Barthélémy P
    Biomaterials; 2017 Nov; 145():72-80. PubMed ID: 28850933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-triggered self-assembly of a small molecule: a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration.
    Wang H; Ren C; Song Z; Wang L; Chen X; Yang Z
    Nanotechnology; 2010 Jun; 21(22):225606. PubMed ID: 20453274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of self-assembled nanostructure-based tetraphenylethylene dipeptides: supramolecular nanobelts as biomimetic hydrogels for cell adhesion and proliferation.
    Talloj SK; Mohammed M; Lin HC
    J Mater Chem B; 2020 Aug; 8(33):7483-7493. PubMed ID: 32667379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A saccharide-based supramolecular hydrogel for cell culture.
    Wang W; Wang H; Ren C; Wang J; Tan M; Shen J; Yang Z; Wang PG; Wang L
    Carbohydr Res; 2011 Jun; 346(8):1013-7. PubMed ID: 21482421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme promotes the hydrogelation from a hydrophobic small molecule.
    Gao J; Wang H; Wang L; Wang J; Kong D; Yang Z
    J Am Chem Soc; 2009 Aug; 131(32):11286-7. PubMed ID: 19630424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic biomaterials: engineering organophosphate hydrolase to form self-assembling enzymatic hydrogels.
    Lu HD; Wheeldon IR; Banta S
    Protein Eng Des Sel; 2010 Jul; 23(7):559-66. PubMed ID: 20457694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation.
    Thornton K; Smith AM; Merry CL; Ulijn RV
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):660-4. PubMed ID: 19614571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear-Thinning and Designable Responsive Supramolecular DNA Hydrogels Based on Chemically Branched DNA.
    Yang B; Zhao Z; Pan Y; Xie J; Zhou B; Li Y; Dong Y; Liu D
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48414-48422. PubMed ID: 34633793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels.
    Shi J; Yuan D; Haburcak R; Zhang Q; Zhao C; Zhang X; Xu B
    Chemistry; 2015 Dec; 21(50):18047-51. PubMed ID: 26462722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular hydrogels inspired by collagen for tissue engineering.
    Hu Y; Wang H; Wang J; Wang S; Liao W; Yang Y; Zhang Y; Kong D; Yang Z
    Org Biomol Chem; 2010 Jul; 8(14):3267-71. PubMed ID: 20502821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cationic self-assembled peptide-based molecular hydrogels for extended ocular drug delivery.
    Liu H; Bi X; Wu Y; Pan M; Ma X; Mo L; Wang J; Li X
    Acta Biomater; 2021 Sep; 131():162-171. PubMed ID: 34157453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermoresponsive hydrogel based on telechelic PEG end-capped with hydrophobic dipeptides.
    Hamley IW; Cheng G; Castelletto V
    Macromol Biosci; 2011 Aug; 11(8):1068-78. PubMed ID: 21557478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulation of 10-hydroxy camptothecin in supramolecular hydrogel as an injectable drug delivery system.
    Li R; Shu C; Wang W; Wang X; Li H; Xu D; Zhong W
    J Pharm Sci; 2015 Jul; 104(7):2266-75. PubMed ID: 25980666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of supramolecular hydrogel-enzyme hybrids exhibiting biomolecule-responsive gel degradation.
    Shigemitsu H; Fujisaku T; Onogi S; Yoshii T; Ikeda M; Hamachi I
    Nat Protoc; 2016 Sep; 11(9):1744-56. PubMed ID: 27560177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.