These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16506830)

  • 21. Changes of Seed Weight, Fatty Acid Composition, and Oil and Protein Contents from Different Peanut FAD2 Genotypes at Different Seed Developmental and Maturation Stages.
    Wang ML; Chen CY; Tonnis B; Pinnow D; Davis J; An YC; Dang P
    J Agric Food Chem; 2018 Apr; 66(14):3658-3665. PubMed ID: 29558122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.).
    Sabir A; Unver A; Kara Z
    J Sci Food Agric; 2012 Jul; 92(9):1982-7. PubMed ID: 22271548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of different dry roast parameters on peanut quality using an industrial belt-type roaster simulator.
    Shi X; Dean LO; Davis JP; Sandeep KP; Sanders TH
    Food Chem; 2018 Feb; 240():974-979. PubMed ID: 28946369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolite Profiles of Raw Peanut Seeds Reveal Differences between Market-Types.
    Klevorn CM; Dean LL; Johanningsmeier SD
    J Food Sci; 2019 Mar; 84(3):397-405. PubMed ID: 30775781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Natural Peanut Edible Coating Enhances the Chemical and Sensory Stability of Roasted Peanuts.
    Martín MP; Riveros CG; Paredes AJ; Allemandi DA; Nepote V; Grosso NR
    J Food Sci; 2019 Jun; 84(6):1529-1537. PubMed ID: 31131890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduction of Platelet Aggregation From Ingestion of Oleic and Linoleic Acids Found in Vitis vinifera and Arachis hypogaea Oils.
    Bazán-Salinas IL; Matías-Pérez D; Pérez-Campos E; Pérez-Campos Mayoral L; García-Montalvo IA
    Am J Ther; 2016; 23(6):e1315-e1319. PubMed ID: 25741817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-oleic peanuts are not different from normal peanuts in allergenic properties.
    Chung SY; Maleki S; Champagne ET; Buhr KL; Gorbet DW
    J Agric Food Chem; 2002 Feb; 50(4):878-82. PubMed ID: 11829661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of growing area on tocopherols, carotenoids and fatty acid composition of Pistacia lentiscus edible oil.
    Mezni F; Khouja ML; Gregoire S; Martine L; Khaldi A; Berdeaux O
    Nat Prod Res; 2014; 28(16):1225-30. PubMed ID: 24628661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compositional and mechanical properties of peanuts roasted to equivalent colors using different time/temperature combinations.
    McDaniel KA; White BL; Dean LL; Sanders TH; Davis JP
    J Food Sci; 2012 Dec; 77(12):C1293-9. PubMed ID: 23145904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seed Oil from Ten Algerian Peanut Landraces for Edible Use and Biodiesel Production.
    Giuffrè AM; Tellah S; Capocasale M; Zappia C; Latati M; Badiani M; Ounane SM
    J Oleo Sci; 2016; 65(1):9-20. PubMed ID: 26743667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of fruity/fermented odorants in high-temperature-cured roasted peanuts.
    Didzbalis J; Ritter KA; Trail AC; Plog FJ
    J Agric Food Chem; 2004 Jul; 52(15):4828-33. PubMed ID: 15264922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the Delta(12) fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes.
    Yu S; Pan L; Yang Q; Min P; Ren Z; Zhang H
    J Genet Genomics; 2008 Nov; 35(11):679-85. PubMed ID: 19022202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of trans-resveratrol concentration and sensory properties of peanut kernels by slicing and ultrasound treatment, using response surface methodology.
    Rudolf JL; Resurreccion AV
    J Food Sci; 2007 Sep; 72(7):S450-62. PubMed ID: 17995657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comprehensive look at the effect of processing on peanut (Arachis spp.) texture.
    Lykomitros D; Den Boer L; Hamoen R; Fogliano V; Capuano E
    J Sci Food Agric; 2018 Aug; 98(10):3962-3972. PubMed ID: 29388682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Effect of Microwave Pretreatment on Micronutrient Contents, Oxidative Stability and Flavor Quality of Peanut Oil.
    Hu H; Liu H; Shi A; Liu L; Fauconnier ML; Wang Q
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30585177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of the nutritional composition, organoleptic characteristics and biological effects of the high oleic peanut.
    Derbyshire EJ
    Int J Food Sci Nutr; 2014 Nov; 65(7):781-90. PubMed ID: 25017702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding variation in oleic acid content of high-oleic virginia-type peanut.
    Andres RJ; Dunne JC
    Theor Appl Genet; 2022 Oct; 135(10):3433-3442. PubMed ID: 35951034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: a review.
    Akhtar S; Khalid N; Ahmed I; Shahzad A; Suleria HA
    Crit Rev Food Sci Nutr; 2014; 54(12):1562-75. PubMed ID: 24580558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oil and squalene in amaranthus grain and leaf.
    He HP; Corke H
    J Agric Food Chem; 2003 Dec; 51(27):7913-20. PubMed ID: 14690373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Commercial runner peanut cultivars in the United States: tocopherol composition.
    Shin EC; Huang YZ; Pegg RB; Phillips RD; Eitenmiller RR
    J Agric Food Chem; 2009 Nov; 57(21):10289-95. PubMed ID: 19886683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.