These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 16506842)
1. Comparison of volatile concentrations in hand-squeezed juices of four different lemon varieties. Allegrone G; Belliardo F; Cabella P J Agric Food Chem; 2006 Mar; 54(5):1844-8. PubMed ID: 16506842 [TBL] [Abstract][Full Text] [Related]
2. Pattern recognition and genetic algorithms for discrimination of orange juices and reduction of significant components from headspace solid-phase microextraction. Rinaldi M; Gindro R; Barbeni M; Allegrone G Phytochem Anal; 2009; 20(5):402-7. PubMed ID: 19609881 [TBL] [Abstract][Full Text] [Related]
3. Distribution of volatile compounds in the pulp, cloud, and serum of freshly squeezed orange juice. Brat P; Rega B; Alter P; Reynes M; Brillouet JM J Agric Food Chem; 2003 May; 51(11):3442-7. PubMed ID: 12744681 [TBL] [Abstract][Full Text] [Related]
4. Volatile composition changes in lemon during fruit maturation by HS-SPME-GC-MS. Li C; Li X; Liang G; Xiang S; Han G J Sci Food Agric; 2022 Jul; 102(9):3599-3606. PubMed ID: 34873698 [TBL] [Abstract][Full Text] [Related]
5. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS). Aprea E; Biasioli F; Carlin S; Endrizzi I; Gasperi F J Agric Food Chem; 2009 May; 57(10):4011-8. PubMed ID: 19348421 [TBL] [Abstract][Full Text] [Related]
6. Flavonoids detection by HPLC-DAD-MS-MS in lemon juices from Sicilian cultivars. Caristi C; Bellocco E; Panzera V; Toscano G; Vadalà R; Leuzzi U J Agric Food Chem; 2003 Jun; 51(12):3528-34. PubMed ID: 12769519 [TBL] [Abstract][Full Text] [Related]
7. Variations of peel essential oils during fruit ripening in four lemon (Citrus limon (L.) Burm. F.) cultivars. Di Rauso Simeone G; Di Matteo A; Rao MA; Di Vaio C J Sci Food Agric; 2020 Jan; 100(1):193-200. PubMed ID: 31502246 [TBL] [Abstract][Full Text] [Related]
8. Analysis of volatile compounds in some typical Brazilian fruits and juices by SPME-GC method. de Lourdes Cardeal Z; Guimarães EM; Parreira FV Food Addit Contam; 2005 Jun; 22(6):508-13. PubMed ID: 16019824 [TBL] [Abstract][Full Text] [Related]
9. Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction. Beaulieu JC; Lea JM J Agric Food Chem; 2006 Oct; 54(20):7789-93. PubMed ID: 17002453 [TBL] [Abstract][Full Text] [Related]
10. Effectiveness of different solid-phase microextraction fibres for differentiation of selected Madeira island fruits based on their volatile metabolite profile--identification of novel compounds. Pereira J; Pereira J; Câmara JS Talanta; 2011 Jan; 83(3):899-906. PubMed ID: 21147335 [TBL] [Abstract][Full Text] [Related]
11. Screening of tropical fruit volatile compounds using solid-phase microextraction (SPME) fibers and internally cooled SPME fiber. Carasek E; Pawliszyn J J Agric Food Chem; 2006 Nov; 54(23):8688-96. PubMed ID: 17090108 [TBL] [Abstract][Full Text] [Related]
12. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS. Ferreira L; Perestrelo R; Caldeira M; Câmara JS J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016 [TBL] [Abstract][Full Text] [Related]
13. Monoterpene and sesquiterpene hydrocarbons of virgin olive oil by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. Vichi S; Guadayol JM; Caixach J; López-Tamames E; Buxaderas S J Chromatogr A; 2006 Aug; 1125(1):117-23. PubMed ID: 16756984 [TBL] [Abstract][Full Text] [Related]
14. Volatile composition of coffee berries at different stages of ripeness and their possible attraction to the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae). Ortiz A; Ortiz A; Vega FE; Posada F J Agric Food Chem; 2004 Sep; 52(19):5914-8. PubMed ID: 15366842 [TBL] [Abstract][Full Text] [Related]
15. Tequila volatile characterization and ethyl ester determination by solid phase microextraction gas chromatography/mass spectrometry analysis. Vallejo-Cordoba B; González-Córdova AF; del Carmen Estrada-Montoya M J Agric Food Chem; 2004 Sep; 52(18):5567-71. PubMed ID: 15373393 [TBL] [Abstract][Full Text] [Related]
16. Characterisation of calamansi (Citrus microcarpa). Part II: volatiles, physicochemical properties and non-volatiles in the juice. Cheong MW; Zhu D; Sng J; Liu SQ; Zhou W; Curran P; Yu B Food Chem; 2012 Sep; 134(2):696-703. PubMed ID: 23107680 [TBL] [Abstract][Full Text] [Related]
17. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Perestrelo R; Barros AS; Rocha SM; Câmara JS Talanta; 2011 Sep; 85(3):1483-93. PubMed ID: 21807213 [TBL] [Abstract][Full Text] [Related]
18. Volatile composition of pomegranates from 9 Spanish cultivars using headspace solid phase microextraction. Melgarejo P; Calín-Sánchez Á; Vázquez-Araújo L; Hernández F; Martínez JJ; Legua P; Carbonell-Barrachina ÁA J Food Sci; 2011; 76(1):S114-20. PubMed ID: 21535709 [TBL] [Abstract][Full Text] [Related]
19. Chemical characterization of orange juice from trees infected with citrus greening (Huanglongbing). Dagulo L; Danyluk MD; Spann TM; Valim MF; Goodrich-Schneider R; Sims C; Rouseff R J Food Sci; 2010 Mar; 75(2):C199-207. PubMed ID: 20492226 [TBL] [Abstract][Full Text] [Related]