These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 16506845)
1. Influence of lignification and feruloylation of maize cell walls on the adsorption of heterocyclic aromatic amines. Funk C; Weber P; Thilker J; Grabber JH; Steinhart H; Bunzel M J Agric Food Chem; 2006 Mar; 54(5):1860-7. PubMed ID: 16506845 [TBL] [Abstract][Full Text] [Related]
2. Model studies of lignified fiber fermentation by human fecal microbiota and its impact on heterocyclic aromatic amine adsorption. Funk C; Braune A; Grabber JH; Steinhart H; Bunzel M Mutat Res; 2007 Nov; 624(1-2):41-8. PubMed ID: 17475287 [TBL] [Abstract][Full Text] [Related]
3. Quantitation of carcinogenic heterocyclic aromatic amines and detection of novel heterocyclic aromatic amines in cooked meats and grill scrapings by HPLC/ESI-MS. Turesky RJ; Taylor J; Schnackenberg L; Freeman JP; Holland RD J Agric Food Chem; 2005 Apr; 53(8):3248-58. PubMed ID: 15826085 [TBL] [Abstract][Full Text] [Related]
4. Lactoperoxidase-catalyzed activation of carcinogenic aromatic and heterocyclic amines. Gorlewska-Roberts KM; Teitel CH; Lay JO; Roberts DW; Kadlubar FF Chem Res Toxicol; 2004 Dec; 17(12):1659-66. PubMed ID: 15606142 [TBL] [Abstract][Full Text] [Related]
5. Quantitation of 13 heterocyclic aromatic amines in cooked beef, pork, and chicken by liquid chromatography-electrospray ionization/tandem mass spectrometry. Ni W; McNaughton L; LeMaster DM; Sinha R; Turesky RJ J Agric Food Chem; 2008 Jan; 56(1):68-78. PubMed ID: 18069786 [TBL] [Abstract][Full Text] [Related]
6. Chemical state of heterocyclic aromatic amines in grilled beef: evaluation by in vitro digestion model and comparison of alkaline hydrolysis and organic solvent for extraction. Szterk A Food Chem Toxicol; 2013 Dec; 62():653-60. PubMed ID: 24120899 [TBL] [Abstract][Full Text] [Related]
7. The effects of different frying oils on the formation of heterocyclic aromatic amines in meatballs and the changes in fatty acid compositions of meatballs and frying oils. Ekiz E; Oz F J Sci Food Agric; 2019 Mar; 99(4):1509-1518. PubMed ID: 30141529 [TBL] [Abstract][Full Text] [Related]
8. Methyl esterification divergently affects the degradability of pectic uronosyls in nonlignified and lignified maize cell walls. Grabber JH; Hatfield RD J Agric Food Chem; 2005 Mar; 53(5):1546-9. PubMed ID: 15740038 [TBL] [Abstract][Full Text] [Related]
9. Heterocyclic amines in process flavours, process flavour ingredients, bouillon concentrates and a pan residue. Solyakov A; Skog K; Jägerstad M Food Chem Toxicol; 1999 Jan; 37(1):1-11. PubMed ID: 10069477 [TBL] [Abstract][Full Text] [Related]
10. Screening of molecular cell targets for carcinogenic heterocyclic aromatic amines by using CALUX® reporter gene assays. Steinberg P; Behnisch PA; Besselink H; Brouwer AA Cell Biol Toxicol; 2017 Jun; 33(3):283-293. PubMed ID: 27942899 [TBL] [Abstract][Full Text] [Related]
11. The effects of different spices and fat types on the formation of heterocyclic aromatic amines in barbecued sucuk. Unal K; Karakaya M; Oz F J Sci Food Agric; 2018 Jan; 98(2):719-725. PubMed ID: 28671272 [TBL] [Abstract][Full Text] [Related]
12. Binding activity of natto (a fermented food) and Bacillus natto isolates to mutagenic-carcinogenic heterocyclic amines. Rajendran R; Ohta Y Can J Microbiol; 2001 Oct; 47(10):935-42. PubMed ID: 11718547 [TBL] [Abstract][Full Text] [Related]
13. Chemical synthesis of 2'-deoxyguanosine-C8 adducts with heterocyclic amines: an application to synthesis of oligonucleotides site-specifically adducted with 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Takamura-Enya T; Ishikawa S; Mochizuki M; Wakabayashi K Chem Res Toxicol; 2006 Jun; 19(6):770-8. PubMed ID: 16780355 [TBL] [Abstract][Full Text] [Related]
14. Quantitation of heterocyclic aromatic amines in ready to eat meatballs by ultra fast liquid chromatography. Oz F Food Chem; 2011 Jun; 126(4):2010-6. PubMed ID: 25213991 [TBL] [Abstract][Full Text] [Related]
16. In search of a maize ideotype for cell wall enzymatic degradability using histological and biochemical lignin characterization. Méchin V; Argillier O; Rocher F; Hébert Y; Mila I; Pollet B; Barriére Y; Lapierre C J Agric Food Chem; 2005 Jul; 53(15):5872-81. PubMed ID: 16028968 [TBL] [Abstract][Full Text] [Related]
17. Moderate ferulate and diferulate levels do not impede maize cell wall degradation by human intestinal microbiota. Funk C; Braune A; Grabber JH; Steinhart H; Bunzel M J Agric Food Chem; 2007 Mar; 55(6):2418-23. PubMed ID: 17319685 [TBL] [Abstract][Full Text] [Related]
18. Inhibitory effects of beer on heterocyclic amine-induced mutagenesis and PhIP-induced aberrant crypt foci in rat colon. Nozawa H; Tazumi K; Sato K; Yoshida A; Takata J; Arimoto-Kobayashi S; Kondo K Mutat Res; 2004 Apr; 559(1-2):177-87. PubMed ID: 15066585 [TBL] [Abstract][Full Text] [Related]
19. Metabolic activation of N-hydroxy arylamines and N-hydroxy heterocyclic amines by human sulfotransferase(s). Chou HC; Lang NP; Kadlubar FF Cancer Res; 1995 Feb; 55(3):525-9. PubMed ID: 7834621 [TBL] [Abstract][Full Text] [Related]
20. Formation of a mutagenic heterocyclic aromatic amine from creatinine in urine of meat eaters and vegetarians. Holland RD; Gehring T; Taylor J; Lake BG; Gooderham NJ; Turesky RJ Chem Res Toxicol; 2005 Mar; 18(3):579-90. PubMed ID: 15777097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]