These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16506848)

  • 1. The water vapor permeability of polycrystalline fat barrier films.
    Martini S; Kim DA; Ollivon M; Marangoni AG
    J Agric Food Chem; 2006 Mar; 54(5):1880-6. PubMed ID: 16506848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of cassava starch films by physicochemical properties and water vapor permeability quantification by FTIR and PLS.
    Henrique CM; Teófilo RF; Sabino L; Ferreira MM; Cereda MP
    J Food Sci; 2007 May; 72(4):E184-9. PubMed ID: 17995770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amaranthus cruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties.
    Colla E; do Amaral Sobral PJ; Menegalli FC
    J Agric Food Chem; 2006 Sep; 54(18):6645-53. PubMed ID: 16939322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection of active aroma compound against moisture and oxygen by encapsulation in biopolymeric emulsion-based edible films.
    Hambleton A; Debeaufort F; Beney L; Karbowiak T; Voilley A
    Biomacromolecules; 2008 Mar; 9(3):1058-63. PubMed ID: 18257554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable films and coatings from hemicelluloses: a review.
    Hansen NM; Plackett D
    Biomacromolecules; 2008 Jun; 9(6):1493-505. PubMed ID: 18457452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water.
    Aulin C; Ahola S; Josefsson P; Nishino T; Hirose Y; Osterberg M; Wågberg L
    Langmuir; 2009 Jul; 25(13):7675-85. PubMed ID: 19348478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical and mechanical properties of experimental coextruded food-packaging films containing a buried layer of recycled low-density polyethylene.
    Badeka A; Goulas AE; Adamantiadi A; Kontominas MG
    J Agric Food Chem; 2003 Apr; 51(8):2426-31. PubMed ID: 12670192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review: nanocomposites in food packaging.
    Arora A; Padua GW
    J Food Sci; 2010; 75(1):R43-9. PubMed ID: 20492194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical properties of nisin-incorporated gelatin and corn zein films and antimicrobial activity against Listeria monocytogenes.
    Ku K; Song KB
    J Microbiol Biotechnol; 2007 Mar; 17(3):520-3. PubMed ID: 18050958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formaldehyde cross-linking of gliadin films: effects on mechanical and water barrier properties.
    Hernández-Muñoz P; López-Rubio A; Lagarón JM; Gavara R
    Biomacromolecules; 2004; 5(2):415-21. PubMed ID: 15003001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water sensitivity, antimicrobial, and physicochemical analyses of edible films based on HPMC and/or chitosan.
    Sebti I; Chollet E; Degraeve P; Noel C; Peyrol E
    J Agric Food Chem; 2007 Feb; 55(3):693-9. PubMed ID: 17263462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of edible film fabricated with channel catfish (Ictalurus punctatus) gelatin extract using selected pretreatment methods.
    Zhang S; Wang Y; Herring JL; Oh JH
    J Food Sci; 2007 Nov; 72(9):C498-503. PubMed ID: 18034710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films.
    Khan RA; Salmieri S; Dussault D; Uribe-Calderon J; Kamal MR; Safrany A; Lacroix M
    J Agric Food Chem; 2010 Jul; 58(13):7878-85. PubMed ID: 20545366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning microbeam small-angle X-ray diffraction study of interfacial heterogeneous crystallization of fat crystals in oil-in-water emulsion droplets.
    Arima S; Ueno S; Ogawa A; Sato K
    Langmuir; 2009 Sep; 25(17):9777-84. PubMed ID: 19588887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered growth of organic crystalline films using liquid crystal solvents.
    Wilkinson FS; Norwood RF; McLellan JM; Lawson LR; Patrick DL
    J Am Chem Soc; 2006 Dec; 128(51):16468-9. PubMed ID: 17177373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology and water barrier properties of nanobiocomposites of κ/ι-hybrid carrageenan and cellulose nanowhiskers.
    Sánchez-García MD; Hilliou L; Lagarón JM
    J Agric Food Chem; 2010 Dec; 58(24):12847-57. PubMed ID: 21073192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical, mechanical, and antibacterial properties of chitosan/PEO blend films.
    Zivanovic S; Li J; Davidson PM; Kit K
    Biomacromolecules; 2007 May; 8(5):1505-10. PubMed ID: 17388625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films.
    Zhang C; Ma Y; Guo K; Zhao X
    J Agric Food Chem; 2012 Mar; 60(9):2219-23. PubMed ID: 22324505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barrier films from renewable forestry waste.
    Edlund U; Ryberg YZ; Albertsson AC
    Biomacromolecules; 2010 Sep; 11(9):2532-8. PubMed ID: 20681735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a high methoxyl pectin edible film for retention of l-(+)-ascorbic acid.
    Pérez CD; Flores SK; Marangoni AG; Gerschenson LN; Rojas AM
    J Agric Food Chem; 2009 Aug; 57(15):6844-55. PubMed ID: 19610645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.