These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 16506856)

  • 1. Mechanisms of patulin toxicity under conditions that inhibit yeast growth.
    Iwahashi Y; Hosoda H; Park JH; Lee JH; Suzuki Y; Kitagawa E; Murata SM; Jwa NS; Gu MB; Iwahashi H
    J Agric Food Chem; 2006 Mar; 54(5):1936-42. PubMed ID: 16506856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray.
    Iwahashi H; Kitagawa E; Suzuki Y; Ueda Y; Ishizawa YH; Nobumasa H; Kuboki Y; Hosoda H; Iwahashi Y
    BMC Genomics; 2007 Apr; 8():95. PubMed ID: 17408496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Transcriptional Changes in Response to Patulin Underlie Toxin Biosorption Differences in
    Oporto CI; Villarroel CA; Tapia SM; García V; Cubillos FA
    Toxins (Basel); 2019 Jul; 11(7):. PubMed ID: 31295862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allicin-induced global gene expression profile of Saccharomyces cerevisiae.
    Yu L; Guo N; Meng R; Liu B; Tang X; Jin J; Cui Y; Deng X
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):219-29. PubMed ID: 20617313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression profiles of yeast Saccharomyces cerevisiae sod1 caused by patulin toxicity and evaluation of recovery potential of ascorbic acid.
    Suzuki T; Iwahashi Y
    J Agric Food Chem; 2011 Jul; 59(13):7145-54. PubMed ID: 21648421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis.
    Yasokawa D; Murata S; Kitagawa E; Iwahashi Y; Nakagawa R; Hashido T; Iwahashi H
    Environ Toxicol; 2008 Oct; 23(5):599-606. PubMed ID: 18528910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M; Masaki K; Fujii T; Iefuji H
    FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiating mechanisms of toxicity using global gene expression analysis in Saccharomyces cerevisiae.
    Caba E; Dickinson DA; Warnes GR; Aubrecht J
    Mutat Res; 2005 Aug; 575(1-2):34-46. PubMed ID: 15878181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.
    Thorsen M; Lagniel G; Kristiansson E; Junot C; Nerman O; Labarre J; Tamás MJ
    Physiol Genomics; 2007 Jun; 30(1):35-43. PubMed ID: 17327492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into yeast adaptive response to the agricultural fungicide mancozeb: a toxicoproteomics approach.
    Santos PM; Simões T; Sá-Correia I
    Proteomics; 2009 Feb; 9(3):657-70. PubMed ID: 19137554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae.
    Moss MO; Long MT
    Food Addit Contam; 2002 Apr; 19(4):387-99. PubMed ID: 11962697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays.
    Minato T; Yoshida S; Ishiguro T; Shimada E; Mizutani S; Kobayashi O; Yoshimoto H
    Yeast; 2009 Mar; 26(3):147-65. PubMed ID: 19243081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic profile of roundup treatment of yeast using DNA microarray analysis.
    Sirisattha S; Momose Y; Kitagawa E; Iwahashi H
    Environ Sci; 2004; 11(6):313-23. PubMed ID: 15750577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative metabolomic analysis of Saccharomyces cerevisiae during the degradation of patulin using gas chromatography-mass spectrometry.
    Shao S; Zhou T; McGarvey BD
    Appl Microbiol Biotechnol; 2012 May; 94(3):789-97. PubMed ID: 22159606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of proteotoxic stress by the mycotoxin patulin.
    Guerra-Moreno A; Hanna J
    Toxicol Lett; 2017 Jul; 276():85-91. PubMed ID: 28529145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin.
    Ianiri G; Idnurm A; Wright SA; Durán-Patrón R; Mannina L; Ferracane R; Ritieni A; Castoria R
    Appl Environ Microbiol; 2013 May; 79(9):3101-15. PubMed ID: 23455346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomarkers in aquatic plants: selection and utility.
    Brain RA; Cedergreen N
    Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of patulin to sulfur dioxide and to yeast fermentation.
    Burroughs LF
    J Assoc Off Anal Chem; 1977 Jan; 60(1):100-3. PubMed ID: 319091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative damage mediated by herbicides on yeast cells.
    Braconi D; Possenti S; Laschi M; Geminiani M; Lusini P; Bernardini G; Santucci A
    J Agric Food Chem; 2008 May; 56(10):3836-45. PubMed ID: 18442254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.