These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16506886)

  • 1. A cell-sparing electric field stimulation technique for high-throughput screening of voltage-gated ion channels.
    Bugianesi RM; Augustine PR; Azer K; Dufresne C; Herrington J; Kath GS; McManus OB; Napolitano CS; Rush A; Sachs J; Simpson N; Wismer MK; Kaczorowski GJ; Slaughter RS
    Assay Drug Dev Technol; 2006 Feb; 4(1):21-35. PubMed ID: 16506886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of voltage-gated sodium-channel blockers by electrical stimulation and fluorescence detection of membrane potential.
    Huang CJ; Harootunian A; Maher MP; Quan C; Raj CD; McCormack K; Numann R; Negulescu PA; González JE
    Nat Biotechnol; 2006 Apr; 24(4):439-46. PubMed ID: 16550174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tonic and phasic guanidinium toxin-block of skeletal muscle Na channels expressed in Mammalian cells.
    Moran O; Picollo A; Conti F
    Biophys J; 2003 May; 84(5):2999-3006. PubMed ID: 12719231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional assay of voltage-gated sodium channels using membrane potential-sensitive dyes.
    Felix JP; Williams BS; Priest BT; Brochu RM; Dick IE; Warren VA; Yan L; Slaughter RS; Kaczorowski GJ; Smith MM; Garcia ML
    Assay Drug Dev Technol; 2004 Jun; 2(3):260-8. PubMed ID: 15285907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gating behaviour of sodium currents in adult mouse muscle recorded with an improved two-electrode voltage clamp.
    Fu Y; Struyk A; Markin V; Cannon S
    J Physiol; 2011 Feb; 589(Pt 3):525-46. PubMed ID: 21135045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence imaging of electrically stimulated cells.
    Burnett P; Robertson JK; Palmer JM; Ryan RR; Dubin AE; Zivin RA
    J Biomol Screen; 2003 Dec; 8(6):660-7. PubMed ID: 14711391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient characterization of use-dependent ion channel blockers by real-time monitoring of channel state.
    Tao H; Guia A; Xie B; Santaana D; Manalo G; Xu J; Ghetti A
    Assay Drug Dev Technol; 2006 Feb; 4(1):57-64. PubMed ID: 16506889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal-sensitivity analysis of ion channel gating kinetics.
    Kargol A; Hosein-Sooklal A
    J Membr Biol; 2004 May; 199(2):113-8. PubMed ID: 15383921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular HTS assays for pharmacological characterization of Na(V)1.7 modulators.
    Trivedi S; Dekermendjian K; Julien R; Huang J; Lund PE; Krupp J; Kronqvist R; Larsson O; Bostwick R
    Assay Drug Dev Technol; 2008 Apr; 6(2):167-79. PubMed ID: 18078380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of insect calcium channels by huwentoxin-V, a neurotoxin from Chinese tarantula Ornithoctonus huwena venom.
    Deng M; Luo X; Meng E; Xiao Y; Liang S
    Eur J Pharmacol; 2008 Mar; 582(1-3):12-6. PubMed ID: 18234186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. omega-conotoxin GVIA alters gating charge movement of N-type (CaV2.2) calcium channels.
    Yarotskyy V; Elmslie KS
    J Neurophysiol; 2009 Jan; 101(1):332-40. PubMed ID: 18971294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Voltage-gated influx ion channels expressed in Xenopus oocytes after the administration of brain mRNA].
    Gerasimenko OV; Kostiuk PG; Liubanova OP; Fedulova SA; Shuba IaM
    Neirofiziologiia; 1991; 23(3):344-53. PubMed ID: 1715525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-gated currents of tilapia prolactin cells.
    Xu SH; Cooke IM
    Gen Comp Endocrinol; 2007 Jan; 150(2):219-32. PubMed ID: 17045992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-capacity membrane potential FRET-based assay for NaV1.8 channels.
    Liu CJ; Priest BT; Bugianesi RM; Dulski PM; Felix JP; Dick IE; Brochu RM; Knaus HG; Middleton RE; Kaczorowski GJ; Slaughter RS; Garcia ML; Köhler MG
    Assay Drug Dev Technol; 2006 Feb; 4(1):37-48. PubMed ID: 16506887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of voltage-gated ionic channels in cholinergic amacrine cells in the mouse retina.
    Kaneda M; Ito K; Morishima Y; Shigematsu Y; Shimoda Y
    J Neurophysiol; 2007 Jun; 97(6):4225-34. PubMed ID: 17428902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-gated calcium channels involved in the inhibitory motor responses and vasoactive intestinal polypeptide release in the rat gastric fundus.
    Currò D
    Eur J Pharmacol; 2010 Feb; 628(1-3):207-13. PubMed ID: 19945453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion permeation through a voltage- sensitive gating pore in brain sodium channels having voltage sensor mutations.
    Sokolov S; Scheuer T; Catterall WA
    Neuron; 2005 Jul; 47(2):183-9. PubMed ID: 16039561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of pseudo-periodic oscillation in voltage-gated sodium channel properties is dependent on the duration of prolonged depolarization.
    Majumdar S; Foster G; Sikdar SK
    Eur J Neurosci; 2004 Jul; 20(1):127-43. PubMed ID: 15245486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoform-dependent interaction of voltage-gated sodium channels with protons.
    Khan A; Kyle JW; Hanck DA; Lipkind GM; Fozzard HA
    J Physiol; 2006 Oct; 576(Pt 2):493-501. PubMed ID: 16873405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of N-, P- and Q-type voltage-gated calcium channels in transmitter release from sympathetic neurones in the mouse isolated vas deferens.
    Waterman SA
    Br J Pharmacol; 1997 Feb; 120(3):393-8. PubMed ID: 9031741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.