These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 16506886)

  • 21. Minimal sodium channel pore consisting of S5-P-S6 segments preserves intracellular pharmacology.
    Pincin C; Ferrera L; Moran O
    Biochem Biophys Res Commun; 2005 Aug; 334(1):140-4. PubMed ID: 15992775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence that the tertiary structure of 20(S)-ginsenoside Rg(3) with tight hydrophobic packing near the chiral center is important for Na(+) channel regulation.
    Kang DI; Lee JY; Yang JY; Jeong SM; Lee JH; Nah SY; Kim Y
    Biochem Biophys Res Commun; 2005 Aug; 333(4):1194-201. PubMed ID: 15979567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons.
    Herzog RI; Cummins TR; Ghassemi F; Dib-Hajj SD; Waxman SG
    J Physiol; 2003 Sep; 551(Pt 3):741-50. PubMed ID: 12843211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Properties of voltage-gated Na+ channels in the human rhabdomyosarcoma cell-line SJ-RH30: conventional and automated patch clamp analysis.
    Randall A; McNaughton N; Green P
    Pharmacol Res; 2006 Aug; 54(2):118-28. PubMed ID: 16675265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrophysiological characterization of voltage-gated Na+ current expressed in the highly metastatic Mat-LyLu cell line of rat prostate cancer.
    Grimes JA; Djamgoz MB
    J Cell Physiol; 1998 Apr; 175(1):50-8. PubMed ID: 9491780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical electrophysiology for probing function and pharmacology of voltage-gated ion channels.
    Zhang H; Reichert E; Cohen AE
    Elife; 2016 May; 5():. PubMed ID: 27215841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation properties of sodium channel Nav1.8 maintain action potential amplitude in small DRG neurons in the context of depolarization.
    Patrick Harty T; Waxman SG
    Mol Pain; 2007 May; 3():12. PubMed ID: 17540018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. State-dependent block of voltage-gated Na+ channels by amitriptyline via the local anesthetic receptor and its implication for neuropathic pain.
    Wang GK; Russell C; Wang SY
    Pain; 2004 Jul; 110(1-2):166-74. PubMed ID: 15275764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ.
    Rothe T; Jüttner R; Bähring R; Grantyn R
    J Neurobiol; 1999 Feb; 38(2):191-206. PubMed ID: 10022566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.
    Chen W; Lee RC
    Biophys J; 1994 Aug; 67(2):603-12. PubMed ID: 7948676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperpolarized shifts in the voltage dependence of fast inactivation of Nav1.4 and Nav1.5 in a rat model of critical illness myopathy.
    Filatov GN; Rich MM
    J Physiol; 2004 Sep; 559(Pt 3):813-20. PubMed ID: 15254148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple calcium channels regulate neurotransmitter release from vagus nerve terminals in the cat bronchiole.
    Fujisawa K; Onoue H; Abe K; Ito Y
    Br J Pharmacol; 1999 Sep; 128(1):262-8. PubMed ID: 10498861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential sialylation modulates voltage-gated Na+ channel gating throughout the developing myocardium.
    Stocker PJ; Bennett ES
    J Gen Physiol; 2006 Mar; 127(3):253-65. PubMed ID: 16476705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of voltage-gated Na+ and Ca2+ channels in gonadotropin-releasing hormone-induced membrane potential changes in identified rat gonadotropes.
    Tse A; Hille B
    Endocrinology; 1993 Apr; 132(4):1475-81. PubMed ID: 8384989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. omega-Conotoxin-GVIA-sensitive calcium channels on preganglionic nerve terminals in mouse pelvic and celiac ganglia.
    Jobling P
    Auton Neurosci; 2009 Mar; 146(1-2):56-61. PubMed ID: 19162562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Model of Electrostimulation Based on the Membrane Capacitance as Electromechanical Transducer for Pore Gating.
    Irnich W; Kroll MW
    Pacing Clin Electrophysiol; 2015 Jul; 38(7):831-45. PubMed ID: 25684121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Voltage-gated Na+ channels confer invasive properties on human prostate cancer cells.
    Bennett ES; Smith BA; Harper JM
    Pflugers Arch; 2004 Mar; 447(6):908-14. PubMed ID: 14677067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcium ion as a cofactor in Na channel gating.
    Armstrong CM; Cota G
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6528-31. PubMed ID: 1650473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voltage-gated sodium and calcium channels in nerve, muscle, and heart.
    French RJ; Zamponi GW
    IEEE Trans Nanobioscience; 2005 Mar; 4(1):58-69. PubMed ID: 15816172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Voltage sensor movements.
    Bezanilla F
    J Gen Physiol; 2002 Oct; 120(4):465-73. PubMed ID: 12356849
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.