BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16507083)

  • 21. Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator.
    Duan GL; Zhu YG; Tong YP; Cai C; Kneer R
    Plant Physiol; 2005 May; 138(1):461-9. PubMed ID: 15834011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural characterization of the As/Sb reductase LmACR2 from Leishmania major.
    Mukhopadhyay R; Bisacchi D; Zhou Y; Armirotti A; Bordo D
    J Mol Biol; 2009 Mar; 386(5):1229-39. PubMed ID: 18687336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of an inactivator of glyceraldehyde-3-phosphate dehydrogenase, a fortuitous arsenate reductase, on disposition of arsenate in rats.
    Németi B; Csanaky I; Gregus Z
    Toxicol Sci; 2006 Mar; 90(1):49-60. PubMed ID: 16322075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenate respiratory reductase gene (arrA) for Desulfosporosinus sp. strain Y5.
    Pérez-Jiménez JR; DeFraia C; Young LY
    Biochem Biophys Res Commun; 2005 Dec; 338(2):825-9. PubMed ID: 16242665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the Arabidopsis thaliana Arath;CDC25 dual-specificity tyrosine phosphatase.
    Landrieu I; Hassan S; Sauty M; Dewitte F; Wieruszeski JM; Inzé D; De Veylder L; Lippens G
    Biochem Biophys Res Commun; 2004 Sep; 322(3):734-9. PubMed ID: 15336525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants.
    Gustin JL; Loureiro ME; Kim D; Na G; Tikhonova M; Salt DE
    Plant J; 2009 Mar; 57(6):1116-27. PubMed ID: 19054361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenate reductase from S. aureus plasmid pI258 is a phosphatase drafted for redox duty.
    Zegers I; Martins JC; Willem R; Wyns L; Messens J
    Nat Struct Biol; 2001 Oct; 8(10):843-7. PubMed ID: 11573087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trait-directed de novo population transcriptome dissects genetic regulation of a balanced polymorphism in phosphorus nutrition/arsenate tolerance in a wild grass, Holcus lanatus.
    Meharg C; Khan B; Norton G; Deacon C; Johnson D; Reinhardt R; Huettel B; Meharg AA
    New Phytol; 2014 Jan; 201(1):144-154. PubMed ID: 24102375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation.
    Picault N; Cazalé AC; Beyly A; Cuiné S; Carrier P; Luu DT; Forestier C; Peltier G
    Biochimie; 2006 Nov; 88(11):1743-50. PubMed ID: 16766112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus?
    Raab A; Ferreira K; Meharg AA; Feldmann J
    J Exp Bot; 2007; 58(6):1333-8. PubMed ID: 17283372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenate reductases in prokaryotes and eukaryotes.
    Mukhopadhyay R; Rosen BP
    Environ Health Perspect; 2002 Oct; 110 Suppl 5(Suppl 5):745-8. PubMed ID: 12426124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arabidopsis T-DNA insertional lines for CDC25 are hypersensitive to hydroxyurea but not to zeocin or salt stress.
    Spadafora ND; Doonan JH; Herbert RJ; Bitonti MB; Wallace E; Rogers HJ; Francis D
    Ann Bot; 2011 May; 107(7):1183-92. PubMed ID: 20647223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A CDC25 homologue from rice functions as an arsenate reductase.
    Duan GL; Zhou Y; Tong YP; Mukhopadhyay R; Rosen BP; Zhu YG
    New Phytol; 2007; 174(2):311-321. PubMed ID: 17388894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interplay between ion binding and catalysis in the thioredoxin-coupled arsenate reductase family.
    Roos G; Buts L; Van Belle K; Brosens E; Geerlings P; Loris R; Wyns L; Messens J
    J Mol Biol; 2006 Jul; 360(4):826-38. PubMed ID: 16797027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and functional characterization of the Arabidopsis salt-tolerance 32 (AtSAT32) gene associated with salt tolerance and ABA signaling.
    Park MY; Chung MS; Koh HS; Lee DJ; Ahn SJ; Kim CS
    Physiol Plant; 2009 Apr; 135(4):426-35. PubMed ID: 19210750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10.
    Afkar E; Lisak J; Saltikov C; Basu P; Oremland RS; Stolz JF
    FEMS Microbiol Lett; 2003 Sep; 226(1):107-12. PubMed ID: 13129615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica.
    Raab A; Feldmann J; Meharg AA
    Plant Physiol; 2004 Mar; 134(3):1113-22. PubMed ID: 15001701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosynthesis of phytochelatins in the fission yeast. Phytochelatin synthesis: a second role for the glutathione synthetase gene of Schizosaccharomyces pombe.
    Al-Lahham A; Rohde V; Heim P; Leuchter R; Veeck J; Wunderlich C; Wolf K; Zimmermann M
    Yeast; 1999 Mar; 15(5):385-96. PubMed ID: 10219997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus.
    Chen ZC; Yokosho K; Kashino M; Zhao FJ; Yamaji N; Ma JF
    Plant J; 2013 Oct; 76(1):10-23. PubMed ID: 23773148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.