These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 1650811)
1. Effect of the calcium buffer EGTA on the "hump" component of charge movement in skeletal muscle. García J; Pizarro G; Ríos E; Stefani E J Gen Physiol; 1991 May; 97(5):885-96. PubMed ID: 1650811 [TBL] [Abstract][Full Text] [Related]
2. Interfering with calcium release suppresses I gamma, the "hump" component of intramembranous charge movement in skeletal muscle. Csernoch L; Pizarro G; Uribe I; Rodríguez M; Ríos E J Gen Physiol; 1991 May; 97(5):845-84. PubMed ID: 1713947 [TBL] [Abstract][Full Text] [Related]
3. The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle. Pizarro G; Csernoch L; Uribe I; Rodríguez M; Ríos E J Gen Physiol; 1991 May; 97(5):913-47. PubMed ID: 1650812 [TBL] [Abstract][Full Text] [Related]
4. Perchlorate enhances transmission in skeletal muscle excitation-contraction coupling. González A; Ríos E J Gen Physiol; 1993 Sep; 102(3):373-421. PubMed ID: 8245817 [TBL] [Abstract][Full Text] [Related]
5. A damped oscillation in the intramembranous charge movement and calcium release flux of frog skeletal muscle fibers. Shirokova N; Pizarro G; Ríos E J Gen Physiol; 1994 Sep; 104(3):449-76. PubMed ID: 7528782 [TBL] [Abstract][Full Text] [Related]
6. Contraction threshold and the "hump" component of charge movement in frog skeletal muscle. Szücs G; Csernoch L; Magyar J; Kovács L J Gen Physiol; 1991 May; 97(5):897-911. PubMed ID: 1865176 [TBL] [Abstract][Full Text] [Related]
7. Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers. Jong DS; Pape PC; Chandler WK J Gen Physiol; 1995 Oct; 106(4):659-704. PubMed ID: 8576702 [TBL] [Abstract][Full Text] [Related]
8. Differential effects of ryanodine and tetracaine on charge movement and calcium transients in frog skeletal muscle. García J; Avila-Sakar AJ; Stefani E J Physiol; 1991; 440():403-17. PubMed ID: 1666652 [TBL] [Abstract][Full Text] [Related]
9. A slow component of intramembranous charge movement during sarcoplasmic reticulum calcium release in frog cut muscle fibers. Pape PC; Jong DS; Chandler WK J Gen Physiol; 1996 Jan; 107(1):79-101. PubMed ID: 8741732 [TBL] [Abstract][Full Text] [Related]
10. Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge 2. Brum G; Rios E J Physiol; 1987 Jun; 387():489-517. PubMed ID: 3116215 [TBL] [Abstract][Full Text] [Related]
11. Intramembrane charge movement and calcium release in frog skeletal muscle. Melzer W; Schneider MF; Simon BJ; Szucs G J Physiol; 1986 Apr; 373():481-511. PubMed ID: 3489092 [TBL] [Abstract][Full Text] [Related]
12. Charge movement in cut twitch fibres of Rana temporaria containing 0.1 mM EGTA. Hui CS; Chen W J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):563-70. PubMed ID: 9379411 [TBL] [Abstract][Full Text] [Related]
13. Decay of the slow calcium current in twitch muscle fibers of the frog is influenced by intracellular EGTA. Francini F; Stefani E J Gen Physiol; 1989 Nov; 94(5):953-69. PubMed ID: 2556497 [TBL] [Abstract][Full Text] [Related]
14. Microinjection of strong calcium buffers suppresses the peak of calcium release during depolarization in frog skeletal muscle fibers. Csernoch L; Jacquemond V; Schneider MF J Gen Physiol; 1993 Feb; 101(2):297-333. PubMed ID: 8384243 [TBL] [Abstract][Full Text] [Related]
15. Differential effects of sarcoplasmic reticular Ca(2+)-ATPase inhibition on charge movements and calcium transients in intact amphibian skeletal muscle fibres. Chawla S; Skepper JN; Huang CL J Physiol; 2002 Mar; 539(Pt 3):869-82. PubMed ID: 11897856 [TBL] [Abstract][Full Text] [Related]
16. Separation of intramembrane charging components in low-calcium solutions in frog skeletal muscle. Huang CL J Gen Physiol; 1991 Aug; 98(2):249-63. PubMed ID: 1940851 [TBL] [Abstract][Full Text] [Related]
17. Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling. Brum G; Fitts R; Pizarro G; Ríos E J Physiol; 1988 Apr; 398():475-505. PubMed ID: 3260626 [TBL] [Abstract][Full Text] [Related]
18. Charge movement and SR calcium release in frog skeletal muscle can be related by a Hodgkin-Huxley model with four gating particles. Simon BJ; Hill DA Biophys J; 1992 May; 61(5):1109-16. PubMed ID: 1318090 [TBL] [Abstract][Full Text] [Related]
19. D600 binding sites on voltage-sensors for excitation-contraction coupling in frog skeletal muscle are intracellular. Hui CS J Muscle Res Cell Motil; 1990 Dec; 11(6):471-88. PubMed ID: 1964695 [TBL] [Abstract][Full Text] [Related]
20. Relationship between myoplasmic calcium transients and calcium currents in frog skeletal muscle. García J; Amador M; Stefani E J Gen Physiol; 1989 Dec; 94(6):973-86. PubMed ID: 2482329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]