These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16508213)

  • 21. GSH depletion, K-Cl cotransport, and regulatory volume decrease in high-K/high-GSH dog red blood cells.
    Fujise H; Higa K; Kanemaru T; Fukuda M; Adragna NC; Lauf PK
    Am J Physiol Cell Physiol; 2001 Dec; 281(6):C2003-9. PubMed ID: 11698259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lithium and protein kinase C modulators regulate swelling-activated K-Cl cotransport and reveal a complete phosphatidylinositol cycle in low K sheep erythrocytes.
    Ferrell CM; Lauf PK; Wilson BA; Adragna NC
    J Membr Biol; 2000 Sep; 177(1):81-93. PubMed ID: 10960155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytosolic protein concentration is the primary volume signal for swelling-induced [K-Cl] cotransport in dog red cells.
    Colclasure GC; Parker JC
    J Gen Physiol; 1992 Jul; 100(1):1-10. PubMed ID: 1512553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. K-Cl cotransport in LK sheep erythrocytes: kinetics of stimulation by cell swelling.
    Bergh C; Kelley SJ; Dunham PB
    J Membr Biol; 1990 Aug; 117(2):177-88. PubMed ID: 2213861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the mechanism of shrinkage-induced potassium influx in rat and human erythrocytes.
    Orlov SN; Pokudin NI; Gurlo TG; Okun IM; Aksentsev SL; Konev SV
    Gen Physiol Biophys; 1991 Aug; 10(4):359-71. PubMed ID: 1663056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional evidence for a pH sensor of erythrocyte K-Cl cotransport through inhibition by internal protons and diethylpyrocarbonate.
    Lauf PK; Adragna NC
    Cell Physiol Biochem; 1998; 8(1-2):46-60. PubMed ID: 9547019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ferret red cells: Na/Ca exchange and Na-K-Cl cotransport.
    Milanick MA
    Comp Biochem Physiol Comp Physiol; 1992 Aug; 102(4):619-24. PubMed ID: 1355025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterisation of the potassium influx in rat erythrocytes.
    Ihrig I; Schönheit C; Häussner W; Bernhardt I
    Gen Physiol Biophys; 1992 Aug; 11(4):377-88. PubMed ID: 1330816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstitution of calyculin-inhibited K-Cl cotransport in dog erythrocyte ghosts by exogenous PP-1.
    Krarup T; Dunham PB
    Am J Physiol; 1996 Mar; 270(3 Pt 1):C898-902. PubMed ID: 8638672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quinine and quinidine inhibit and reveal heterogeneity of K-Cl cotransport in low K sheep erythrocytes.
    Adragna NC; Lauf PK
    J Membr Biol; 1994 Nov; 142(2):195-207. PubMed ID: 7884811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulation of Na+,K+,Cl- cotransport by forskolin-activated adenylyl cyclase in fetal human nonpigmented epithelial cells.
    Crook RB; Polansky JR
    Invest Ophthalmol Vis Sci; 1994 Aug; 35(9):3374-83. PubMed ID: 7520028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asymmetry of Na-K-Cl cotransport in human erythrocytes.
    Kracke GR; Anatra MA; Dunham PB
    Am J Physiol; 1988 Feb; 254(2 Pt 1):C243-50. PubMed ID: 3348364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Volume-dependent regulation of ion carriers in human and rat erythrocytes: role of cytoskeleton and protein phosphorylation.
    Orlov SN; Kuznetsov SR; Kolosova IA; Aksentsev SL; Konev SV
    Ross Fiziol Zh Im I M Sechenova; 1997; 83(5-6):119-47. PubMed ID: 13677670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Na(+)-K(+)-2Cl- cotransport, Na+/H+ exchange, and cell volume in ferret erythrocytes.
    Mairbäurl H; Herth C
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1603-11. PubMed ID: 8944644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Na+-K+ pump activities of high- and low-potassium sheep red cells with internal magnesium and calcium altered by A23187.
    Fujise H; Lauf PK
    J Physiol; 1988 Nov; 405():605-14. PubMed ID: 3151371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclosporine stimulates Na+-K+-Cl- cotransport activity in cultured mouse medullary thick ascending limb cells.
    Wu MS; Yang CW; Bens M; Peng KC; Yu HM; Vandewalle A
    Kidney Int; 2000 Oct; 58(4):1652-63. PubMed ID: 11012899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. K:Cl cotransport: emerging molecular aspects of a ouabain-resistant, volume-responsive transport system in red blood cells.
    Lauf PK
    Ren Physiol Biochem; 1988; 11(3-5):248-59. PubMed ID: 3074401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct estimate of 1:1 stoichiometry of K(+)-Cl(-) cotransport in rabbit erythrocytes.
    Jennings ML; Adame MF
    Am J Physiol Cell Physiol; 2001 Sep; 281(3):C825-32. PubMed ID: 11502559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulation of Na+-K+-2Cl- cotransport by arsenite in ferret erythrocytes.
    Flatman PW; Creanor J
    J Physiol; 1999 Aug; 519 Pt 1(Pt 1):143-52. PubMed ID: 10432345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of Na-K-2Cl cotransport in osteoblasts.
    Whisenant N; Zhang BX; Khademazad M; Loessberg P; Muallem S
    Am J Physiol; 1991 Sep; 261(3 Pt 1):C433-40. PubMed ID: 1716050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.