BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 16508737)

  • 21. Comparison between UCT type and DPAO biomass phosphorus removal efficiency under aerobic and anoxic conditions.
    Kapagiannidis AG; Zafiriadis I; Aivasidis A
    Water Sci Technol; 2009; 60(10):2695-703. PubMed ID: 19923776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous carbon, nitrogen and phosphorous removal from municipal wastewater in a circulating fluidized bed bioreactor.
    Patel A; Zhu J; Nakhla G
    Chemosphere; 2006 Nov; 65(7):1103-12. PubMed ID: 16762392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater.
    Lemaire R; Yuan Z; Bernet N; Marcos M; Yilmaz G; Keller J
    Biodegradation; 2009 Jun; 20(3):339-50. PubMed ID: 18937035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous nitrogen and phosphorus removal under low dissolved oxygen conditions.
    Xia SQ; Gao TY; Zhou ZY
    J Environ Sci (China); 2001 Jan; 13(1):46-50. PubMed ID: 11590718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BICT biological process for nitrogen and phosphorus removal.
    Huang Y; Li Y; Pan Y
    Water Sci Technol; 2004; 50(6):179-88. PubMed ID: 15537006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nutrient removal using anaerobically fermented leachate of food waste in the BNR process.
    Lee CY; Shin HS; Chae SR; Nam SY; Paik BC
    Water Sci Technol; 2003; 47(1):159-65. PubMed ID: 12578189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Influence of carbon source on biological nutrient removal in A2O process].
    Wu CY; Peng YZ; Peng Y; Chen ZQ; Jiang T
    Huan Jing Ke Xue; 2009 Mar; 30(3):798-802. PubMed ID: 19432331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.
    Tong J; Chen Y
    Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A modified UCT method for biological nutrient removal: configuration and performance.
    Vaiopoulou E; Aivasidis A
    Chemosphere; 2008 Jul; 72(7):1062-8. PubMed ID: 18519149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic control strategy for biological nitrogen removal of low C/N wastewater in a sequencing batch reactor.
    Kishida N; Kim JH; Chen M; Tsuneda S; Sasaki H; Sudo R
    Water Sci Technol; 2004; 50(10):45-50. PubMed ID: 15656294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of influent nutrient ratios and temperature on simultaneous phosphorus and nitrogen removal in a step-feed CAST.
    Ma J; Peng C; Takigawa A; Wang S; Wang L; Ma N; Liu Y; Peng Y
    Water Sci Technol; 2010; 62(9):2028-36. PubMed ID: 21045328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of an innovative vertical submerged membrane bioreactor (VSMBR) for simultaneous removal of organic matter and nutrients.
    Chae SR; Kang ST; Watanabe Y; Shin HS
    Water Res; 2006 Jun; 40(11):2161-7. PubMed ID: 16720035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of recirculation configurations for biological nutrient removal in a membrane bioreactor.
    Bekir Ersu C; Ong SK; Arslankaya E; Brown P
    Water Res; 2008 Mar; 42(6-7):1651-63. PubMed ID: 17991508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced removal of chemical oxygen demand, nitrogen and phosphorus using the ameliorative anoxic/anaerobic/oxic process and micro-electrolysis.
    Bao KQ; Gao JQ; Wang ZB; Zhang RQ; Zhang ZY; Sugiura N
    Water Sci Technol; 2012; 66(4):850-7. PubMed ID: 22766877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of acetate and nitrite addition on fraction of denitrifying phosphate-accumulating organisms and nutrient removal efficiency in anaerobic/aerobic/anoxic process.
    Soejima K; Oki K; Terada A; Tsuneda S; Hirata A
    Bioprocess Biosyst Eng; 2006 Dec; 29(5-6):305-13. PubMed ID: 16944208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of operational parameters of anaerobic phase for enhanced phosphorus removal in MBR.
    He SB; Wang BZ; Wang L; Jiang YF
    J Environ Sci (China); 2004; 16(1):67-72. PubMed ID: 14971455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater.
    Merzouki M; Bernet N; Delgenès JP; Benlemlih M
    Bioresour Technol; 2005 Aug; 96(12):1317-22. PubMed ID: 15792577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process.
    Chang WC; Hsu GS; Chiang SM; Su MC
    Bioresour Technol; 2006 Sep; 97(13):1503-8. PubMed ID: 16112569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater.
    Wu J; Zhang J; Jia W; Xie H; Gu RR; Li C; Gao B
    Bioresour Technol; 2009 Jun; 100(12):2910-7. PubMed ID: 19268576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nutrient removal from wastewaters using high performance materials.
    Mackinnon ID; Barr K; Miller E; Hunter S; Pinel T
    Water Sci Technol; 2003; 47(11):101-7. PubMed ID: 12906277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.