BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 1650880)

  • 1. Heat shock in Bacillus subtilis: genetic characterization of a mutant.
    Qoronfleh MW; Streips UN
    Microbios; 1991; 66(268-269):187-95. PubMed ID: 1650880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transposon-mediated random mutagenesis of Bacillus subtilis.
    Wilson AC; Szurmant H
    Methods Mol Biol; 2011; 765():359-71. PubMed ID: 21815103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growing Bacillus subtilis tendrils sense and avoid each other.
    James BL; Kret J; Patrick JE; Kearns DB; Fall R
    FEMS Microbiol Lett; 2009 Sep; 298(1):12-9. PubMed ID: 19659723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and initial characterization of a Bacillus subtilis mutant with novel protease secretion capability.
    Qoronfleh MW; Streips UN
    Biochem Biophys Res Commun; 1986 Jul; 138(2):526-32. PubMed ID: 3017330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.
    Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W
    EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold shock response in Bacillus subtilis.
    Graumann PL; Marahiel MA
    J Mol Microbiol Biotechnol; 1999 Nov; 1(2):203-9. PubMed ID: 10943551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. YpdC determines site-1 degradation in regulated intramembrane proteolysis of the RsiW anti-sigma factor of Bacillus subtilis.
    Heinrich J; Wiegert T
    Mol Microbiol; 2006 Oct; 62(2):566-79. PubMed ID: 17020587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of sensitivity to heat shock during logarithmic growth of Bacillus subtilis.
    Fabisiewicz A; Piechowska M
    Acta Biochim Pol; 1988; 35(3):207-17. PubMed ID: 3149844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Isolation of Rec mutants of Bacillus subtilis via insertional mutagenesis].
    Gavrilova EV; Khasanov FK; Prozorov AA
    Genetika; 1991 Feb; 27(2):222-8. PubMed ID: 1651879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementation of cold shock proteins by translation initiation factor IF1 in vivo.
    Weber MH; Beckering CL; Marahiel MA
    J Bacteriol; 2001 Dec; 183(24):7381-6. PubMed ID: 11717297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat-shock proteins in membrane vesicles of Bacillus subtilis.
    Fabisiewicz A; Piechowska M
    Acta Biochim Pol; 1988; 35(4):367-76. PubMed ID: 3150197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of two temperature-inducible promoters newly isolated from B. subtilis.
    Li W; Li HX; Ji SY; Li S; Gong YS; Yang MM; Chen YL
    Biochem Biophys Res Commun; 2007 Jul; 358(4):1148-53. PubMed ID: 17521615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation of a gene encoding a putative ribokinase leads to reduced salt tolerance under potassium limitation in Bacillus subtilis.
    Ulanova D; Holanová V; Prenosilová L; Náprstek J; Lichá I
    Folia Microbiol (Praha); 2007; 52(3):203-8. PubMed ID: 17702456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Synthesis of heat shock proteins following amino acid or oxygen limitation in Bacillus subtilis relA+ and relA strains].
    Hecker M; Richter A; Schroeter A; Wölfel L; Mach F
    Z Naturforsch C J Biosci; 1987; 42(7-8):941-7. PubMed ID: 2961154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of stress proteins by sodium chloride treatment in Bacillus subtilis.
    Hecker M; Heim C; Völker U; Wölfel L
    Arch Microbiol; 1988; 150(6):564-6. PubMed ID: 3144958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an intermolecular transposition assay system in Bacillus subtilis 168 using IS4Bsu1 from Bacillus subtilis (natto).
    Takahashi K; Sekine Y; Chibazakura T; Yoshikawa H
    Microbiology (Reading); 2007 Aug; 153(Pt 8):2553-2559. PubMed ID: 17660419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CitB mutation increases the alkaline protease productivity in Bacillus subtilis.
    Gao W; Dai S; Liu Q; Xu H; Qiao M
    J Gen Appl Microbiol; 2010 Oct; 56(5):403-7. PubMed ID: 21099137
    [No Abstract]   [Full Text] [Related]  

  • 18. Production of protease by Bacillus subtilis grown on sardinelle heads and viscera flour.
    Ellouz Y; Bayoudh A; Kammoun S; Gharsallah N; Nasri M
    Bioresour Technol; 2001 Oct; 80(1):49-51. PubMed ID: 11554601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Production of alkaline proteases].
    Massucco AE; Mazza LA; Balatti AP
    Rev Latinoam Microbiol; 1981; 23(3):145-9. PubMed ID: 6808632
    [No Abstract]   [Full Text] [Related]  

  • 20. Some properties of succinylated subtilopeptidase.
    Gounaris A; Ottesen M
    C R Trav Lab Carlsberg; 1965; 35(3):37-62. PubMed ID: 4956151
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.