These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 16509314)
1. Element flows associated with marine shore mine tailings deposits. Dold B Environ Sci Technol; 2006 Feb; 40(3):752-8. PubMed ID: 16509314 [TBL] [Abstract][Full Text] [Related]
2. Sulfur speciation and stable isotope trends of water-soluble sulfates in mine tailings profiles. Dold B; Spangenberg JE Environ Sci Technol; 2005 Aug; 39(15):5650-6. PubMed ID: 16124299 [TBL] [Abstract][Full Text] [Related]
3. Geochemical and environmental controls on the genesis of soluble efflorescent salts in coastal mine tailings deposits: a discussion based on reactive transport modeling. Bea SA; Ayora C; Carrera J; Saaltink MW; Dold B J Contam Hydrol; 2010 Jan; 111(1-4):65-82. PubMed ID: 20079553 [TBL] [Abstract][Full Text] [Related]
4. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer. Dold B; Diaby N; Spangenberg JE Environ Sci Technol; 2011 Jun; 45(11):4876-83. PubMed ID: 21563818 [TBL] [Abstract][Full Text] [Related]
5. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile. Korehi H; Blöthe M; Sitnikova MA; Dold B; Schippers A Environ Sci Technol; 2013 Mar; 47(5):2189-96. PubMed ID: 23373853 [TBL] [Abstract][Full Text] [Related]
6. Geochemical investigations of sulfide-bearing tailings at Kristineberg, northern Sweden, a few years after remediation. Holmström H; Salmon UJ; Carlsson E; Petrov P; Ohlander B Sci Total Environ; 2001 Jun; 273(1-3):111-33. PubMed ID: 11419596 [TBL] [Abstract][Full Text] [Related]
7. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine. Simón M; Martín F; Ortiz I; García I; Fernández J; Fernández E; Dorronsoro C; Aguilar J Sci Total Environ; 2001 Nov; 279(1-3):63-74. PubMed ID: 11712606 [TBL] [Abstract][Full Text] [Related]
8. Long-term effects of the Aznalcóllar mine spill-heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). Kraus U; Wiegand J Sci Total Environ; 2006 Aug; 367(2-3):855-71. PubMed ID: 16500695 [TBL] [Abstract][Full Text] [Related]
9. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sun Z; Xie X; Wang P; Hu Y; Cheng H Sci Total Environ; 2018 Oct; 639():217-227. PubMed ID: 29787905 [TBL] [Abstract][Full Text] [Related]
11. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal). Candeias C; Ávila PF; Ferreira da Silva E; Teixeira JP Environ Monit Assess; 2015 Mar; 187(3):135. PubMed ID: 25702148 [TBL] [Abstract][Full Text] [Related]
12. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching. Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262 [TBL] [Abstract][Full Text] [Related]
13. Influence of hydrology on heavy metal speciation and mobility in a Pb-Zn mine tailing. Kovács E; Dubbin WE; Tamás J Environ Pollut; 2006 May; 141(2):310-20. PubMed ID: 16219405 [TBL] [Abstract][Full Text] [Related]
14. Benthic community status and mobilization of Ni, Cu and Co at abandoned sea deposits for mine tailings in SW Norway. Schaanning MT; Trannum HC; Øxnevad S; Ndungu K Mar Pollut Bull; 2019 Apr; 141():318-331. PubMed ID: 30955740 [TBL] [Abstract][Full Text] [Related]
15. Sequential extraction of sulfide-rich tailings remediated by the application of till cover, Kristineberg mine, northern Sweden. Carlsson E; Thunberg J; Ohlander B; Holmström H Sci Total Environ; 2002 Nov; 299(1-3):207-26. PubMed ID: 12462586 [TBL] [Abstract][Full Text] [Related]
16. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Ramirez M; Massolo S; Frache R; Correa JA Mar Pollut Bull; 2005 Jan; 50(1):62-72. PubMed ID: 15664034 [TBL] [Abstract][Full Text] [Related]
17. Effects of sewage sludge application on heavy metal leaching from mine tailings impoundments. Andrés NF; Francisco MS Bioresour Technol; 2008 Nov; 99(16):7521-30. PubMed ID: 18372173 [TBL] [Abstract][Full Text] [Related]
18. Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana. Sracek O; Kříbek B; Mihaljevič M; Ettler V; Vaněk A; Penížek V; Filip J; Veselovský F; Bagai ZB Environ Monit Assess; 2018 Jul; 190(8):482. PubMed ID: 30039179 [TBL] [Abstract][Full Text] [Related]
19. Phytostabilisation of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments. Pardo T; Bernal MP; Clemente R Chemosphere; 2017 Jul; 178():556-564. PubMed ID: 28351014 [TBL] [Abstract][Full Text] [Related]
20. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings. Huang L; Li X; Nguyen TA PLoS One; 2015; 10(8):e0135364. PubMed ID: 26295582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]