These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 16509339)
1. Assessing sites contaminated with unexploded ordnance: statistical modeling of ordnance spatial distribution. Macdonald JA; Small MJ Environ Sci Technol; 2006 Feb; 40(3):931-8. PubMed ID: 16509339 [TBL] [Abstract][Full Text] [Related]
2. Explosion probability of unexploded ordnance: expert beliefs. MacDonald JA; Small MJ; Morgan MG Risk Anal; 2008 Aug; 28(4):825-41. PubMed ID: 18627542 [TBL] [Abstract][Full Text] [Related]
3. Quantifying the risks of unexploded ordnance at closed military bases. Gibson JM; Small MJ; Morgan MG Environ Sci Technol; 2009 Jan; 43(2):259-65. PubMed ID: 19238949 [TBL] [Abstract][Full Text] [Related]
4. Delineating high-density areas in spatial Poisson fields from strip-transect sampling using indicator geostatistics: application to unexploded ordnance removal. Saito H; McKenna SA J Environ Manage; 2007 Jul; 84(1):71-82. PubMed ID: 16824672 [TBL] [Abstract][Full Text] [Related]
5. Condition of in situ unexploded ordnance. Taylor S; Bigl S; Packer B Sci Total Environ; 2015 Feb; 505():762-9. PubMed ID: 25461079 [TBL] [Abstract][Full Text] [Related]
6. Corrosion of unexploded ordnance in soil-field results. Chendorain MD; Stewart LD; Packer B Environ Sci Technol; 2005 Apr; 39(8):2442-7. PubMed ID: 15884333 [TBL] [Abstract][Full Text] [Related]
7. Communicating quantitative information about unexploded ordnance risks to the public. MacDonald Gibson J; Rowe A; Stone ER; Bruine de Bruin W Environ Sci Technol; 2013 May; 47(9):4004-13. PubMed ID: 23514101 [TBL] [Abstract][Full Text] [Related]
8. Civilian injuries due to unexploded ordnance in military training areas in southern Israel. Shaked G; Beck G; Sebbag G; Yitzhak A; Zlotnik A; Czeiger D Eur J Trauma Emerg Surg; 2013 Apr; 39(2):113-5. PubMed ID: 26815066 [TBL] [Abstract][Full Text] [Related]
9. The effect of explosive remnants of war on global public health: a systematic mixed-studies review using narrative synthesis. Frost A; Boyle P; Autier P; King C; Zwijnenburg W; Hewitson D; Sullivan R Lancet Public Health; 2017 Jun; 2(6):e286-e296. PubMed ID: 29253366 [TBL] [Abstract][Full Text] [Related]
10. Death and injury from landmines and unexploded ordnance in Afghanistan. Bilukha OO; Brennan M; Woodruff BA JAMA; 2003 Aug; 290(5):650-3. PubMed ID: 12902369 [TBL] [Abstract][Full Text] [Related]
11. Vapor phase transport of unexploded ordnance compounds through soils. Ravikrishna R; Yost SL; Price CB; Valsaraj KT; Brannon JM; Miyares PH Environ Toxicol Chem; 2002 Oct; 21(10):2020-6. PubMed ID: 12371476 [TBL] [Abstract][Full Text] [Related]
12. Epidemiological Study of Child Casualties of Landmines and Unexploded Ordnances: A National Study from Iran. Mousavi B; Soroush MR; Masoumi M; Khateri S; Modirian E; Shokoohi H; Fatemi MJ; Ali Hematti M; Soroush M; Ghassemi-Broumand M; Rassafiani M; Allami M; Nouri F; Yavari A; Ganjparvar Z; Kamyab M; Mirsadeghi SA Prehosp Disaster Med; 2015 Oct; 30(5):472-7. PubMed ID: 26374671 [TBL] [Abstract][Full Text] [Related]
13. Removal of unexploded ordnance from patients: a 50-year military experience and current recommendations. Lein B; Holcomb J; Brill S; Hetz S; McCrorey T Mil Med; 1999 Mar; 164(3):163-5. PubMed ID: 10091487 [TBL] [Abstract][Full Text] [Related]
14. Injuries associated with landmines and unexploded ordnance--Afghanistan, 1997-2002. Centers for Disease Control and Prevention (CDC) MMWR Morb Mortal Wkly Rep; 2003 Sep; 52(36):859-62. PubMed ID: 12970617 [TBL] [Abstract][Full Text] [Related]
15. Stratification of risk to the surgical team in removal of small arms ammunition implanted in the craniofacial region: case report. Forbes JA; Laughlin I; Newberry S; Ryhn M; Pasley J; Newberry T J Neurosurg; 2016 Sep; 125(3):661-6. PubMed ID: 26832604 [TBL] [Abstract][Full Text] [Related]
17. Case study: The downside of using a worst-case approach in occupational safety policy as an interpretation of the precautionary principle: Putting the uncertain UXO occupational safety risk into probabilistic perspective. Helsloot M; Snip W; Helsloot I Risk Anal; 2024 Sep; ():. PubMed ID: 39289319 [TBL] [Abstract][Full Text] [Related]
18. Underwater acoustic characterisation of unexploded ordnance disposal using deflagration. Robinson SP; Wang L; Cheong SH; Lepper PA; Marubini F; Hartley JP Mar Pollut Bull; 2020 Nov; 160():111646. PubMed ID: 33181928 [TBL] [Abstract][Full Text] [Related]
19. In-situ comparison of high-order detonations and low-order deflagration methodologies for underwater unexploded ordnance (UXO) disposal. Lepper PA; Cheong SH; Robinson SP; Wang L; Tougaard J; Griffiths ET; Hartley JP Mar Pollut Bull; 2024 Feb; 199():115965. PubMed ID: 38219294 [TBL] [Abstract][Full Text] [Related]
20. On the Development of a Digital Twin for Underwater UXO Detection Using Magnetometer-Based Data in Application for the Training Set Generation for Machine Learning Models. Blachnik M; Przyłucki R; Golak S; Ściegienka P; Wieczorek T Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]