These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16509586)

  • 1. Molecular evolution of adrenoceptors and dopamine receptors: implications for the binding of catecholamines.
    Xhaard H; Rantanen VV; Nyrönen T; Johnson MS
    J Med Chem; 2006 Mar; 49(5):1706-19. PubMed ID: 16509586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
    Huber T; Menon S; Sakmar TP
    Biochemistry; 2008 Oct; 47(42):11013-23. PubMed ID: 18821775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin- and beta2-adrenergic-based homology models through the docking studies.
    Yuzlenko O; Kieć-Kononowicz K
    J Comput Chem; 2009 Jan; 30(1):14-32. PubMed ID: 18496794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-based virtual screening of chemical databases. II. Are homology models of G-Protein Coupled Receptors suitable targets?
    Bissantz C; Bernard P; Hibert M; Rognan D
    Proteins; 2003 Jan; 50(1):5-25. PubMed ID: 12471595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor.
    Gouldson PR; Kidley NJ; Bywater RP; Psaroudakis G; Brooks HD; Diaz C; Shire D; Reynolds CA
    Proteins; 2004 Jul; 56(1):67-84. PubMed ID: 15162487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-binding modes in cationic biogenic amine receptors.
    Ishiguro M
    Chembiochem; 2004 Sep; 5(9):1210-9. PubMed ID: 15368572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the similarity and divergence of dopamine D2-like receptors and identification of validated ligand-receptor complexes.
    Boeckler F; Lanig H; Gmeiner P
    J Med Chem; 2005 Feb; 48(3):694-709. PubMed ID: 15689154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site.
    Wolf S; Böckmann M; Höweler U; Schlitter J; Gerwert K
    FEBS Lett; 2008 Oct; 582(23-24):3335-42. PubMed ID: 18775703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional models of histamine H3 receptor antagonist complexes and their pharmacophore.
    Axe FU; Bembenek SD; Szalma S
    J Mol Graph Model; 2006 May; 24(6):456-64. PubMed ID: 16386444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the ligand-free G-protein-coupled receptor opsin.
    Park JH; Scheerer P; Hofmann KP; Choe HW; Ernst OP
    Nature; 2008 Jul; 454(7201):183-7. PubMed ID: 18563085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of efficacy of chiral adrenergic agonists.
    Patil PN; Li C; Kumari V; Hieble JP
    Chirality; 2008 Mar; 20(3-4):529-43. PubMed ID: 18172836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model structures of alpha-2 adrenoceptors in complex with automatically docked antagonist ligands raise the possibility of interactions dissimilar from agonist ligands.
    Xhaard H; Nyrönen T; Rantanen VV; Ruuskanen JO; Laurila J; Salminen T; Scheinin M; Johnson MS
    J Struct Biol; 2005 May; 150(2):126-43. PubMed ID: 15866736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical study to investigate D2DAR/D4DAR selectivity: receptor modeling and molecular docking of dopaminergic ligands.
    Ortore G; Tuccinardi T; Bertini S; Martinelli A
    J Med Chem; 2006 Feb; 49(4):1397-407. PubMed ID: 16480275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis for the stereoselective interactions of catecholamines with alpha-adrenoceptors.
    Hieble JP; Hehr A; Li YO; Ruffolo RR
    Proc West Pharmacol Soc; 1998; 41():225-8. PubMed ID: 9836297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding site analysis of full-length alpha1a adrenergic receptor using homology modeling and molecular docking.
    Pedretti A; Elena Silva M; Villa L; Vistoli G
    Biochem Biophys Res Commun; 2004 Jun; 319(2):493-500. PubMed ID: 15178433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of amino acid determinants of dopamine 2 receptor synthetic agonist function.
    Al-Fulaij MA; Ren Y; Beinborn M; Kopin AS
    J Pharmacol Exp Ther; 2007 Apr; 321(1):298-307. PubMed ID: 17204745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homology modeling and molecular dynamics simulations of the mu opioid receptor in a membrane-aqueous system.
    Zhang Y; Sham YY; Rajamani R; Gao J; Portoghese PS
    Chembiochem; 2005 May; 6(5):853-9. PubMed ID: 15776407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modelling of subtypes (alpha(2A), alpha(2B) and alpha(2C)) of alpha(2)-adrenoceptors: a comparative study.
    Balogh B; Szilágyi A; Gyires K; Bylund DB; Mátyus P
    Neurochem Int; 2009 Nov; 55(6):355-61. PubMed ID: 19447153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of ligand-receptor interactions in transmembrane domain V of the alpha2A-adrenoceptor.
    Peltonen JM; Nyrönen T; Wurster S; Pihlavisto M; Hoffrén AM; Marjamäki A; Xhaard H; Kanerva L; Savola JM; Johnson MS; Scheinin M
    Br J Pharmacol; 2003 Sep; 140(2):347-58. PubMed ID: 12970108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.