BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

596 related articles for article (PubMed ID: 16509680)

  • 1. Anhydrous proton-conducting polymeric electrolytes for fuel cells.
    Narayanan SR; Yen SP; Liu L; Greenbaum SG
    J Phys Chem B; 2006 Mar; 110(9):3942-8. PubMed ID: 16509680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.
    Steininger H; Schuster M; Kreuer KD; Kaltbeitzel A; Bingöl B; Meyer WH; Schauff S; Brunklaus G; Maier J; Spiess HW
    Phys Chem Chem Phys; 2007 Apr; 9(15):1764-73. PubMed ID: 17415487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomembranes for fuel cell electrolytes employing anhydrous proton conducting uracil composites.
    Yamada M; Honma I
    Biosens Bioelectron; 2006 May; 21(11):2064-9. PubMed ID: 16530401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anhydrous proton-conducting membrane based on poly-2-vinylpyridinium dihydrogenphosphate for electrochemical applications.
    Yang B; Manohar A; Prakash GK; Chen W; Narayanan SR
    J Phys Chem B; 2011 Dec; 115(49):14462-8. PubMed ID: 22029863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical properties of proton conducting membranes based on a protic ionic liquid.
    Martinelli A; Matic A; Jacobsson P; Börjesson L; Fernicola A; Panero S; Scrosati B; Ohno H
    J Phys Chem B; 2007 Nov; 111(43):12462-7. PubMed ID: 17927237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anhydrous proton-conducting properties of triazole-phosphonic acid copolymers: a combined study with MAS NMR.
    Celik SU; Akbey U; Graf R; Bozkurt A; Spiess HW
    Phys Chem Chem Phys; 2008 Oct; 10(39):6058-66. PubMed ID: 18825294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane.
    Hara N; Ohashi H; Ito T; Yamaguchi T
    J Phys Chem B; 2009 Apr; 113(14):4656-63. PubMed ID: 19290602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs.
    Fernicola A; Panero S; Scrosati B; Tamada M; Ohno H
    Chemphyschem; 2007 May; 8(7):1103-7. PubMed ID: 17393375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes.
    Choi BG; Hong J; Park YC; Jung DH; Hong WH; Hammond PT; Park H
    ACS Nano; 2011 Jun; 5(6):5167-74. PubMed ID: 21534602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers.
    Kim YS; Pivovar BS
    Annu Rev Chem Biomol Eng; 2010; 1():123-48. PubMed ID: 22432576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Materials challenges toward proton-conducting oxide fuel cells: a critical review.
    Fabbri E; Pergolesi D; Traversa E
    Chem Soc Rev; 2010 Nov; 39(11):4355-69. PubMed ID: 20818453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between ion diffusional motion and ionic conductivity for different electrolytes based on ionic liquid.
    Kaur DP; Yamada K; Park JS; Sekhon SS
    J Phys Chem B; 2009 Apr; 113(16):5381-90. PubMed ID: 19323513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copolymerization of divinylsilyl-11-silicotungstic acid with butyl acrylate and hexanediol diacrylate: synthesis of a highly proton-conductive membrane for fuel-cell applications.
    Horan JL; Genupur A; Ren H; Sikora BJ; Kuo MC; Meng F; Dec SF; Haugen GM; Yandrasits MA; Hamrock SJ; Frey MH; Herring AM
    ChemSusChem; 2009; 2(3):226-9. PubMed ID: 19170068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4,5-dicyano-1H-[1,2,3]-triazole as a proton transport facilitator for polymer electrolyte membrane fuel cells.
    Subbaraman R; Ghassemi H; Zawodzinski TA
    J Am Chem Soc; 2007 Feb; 129(8):2238-9. PubMed ID: 17266308
    [No Abstract]   [Full Text] [Related]  

  • 16. Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells.
    Tang H; Pan M; Jiang SP
    Dalton Trans; 2011 May; 40(19):5220-7. PubMed ID: 21455522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heteropolyacid-encapsulated self-assembled materials for anhydrous proton-conducting electrolytes.
    Yamada M; Honma I
    J Phys Chem B; 2006 Oct; 110(41):20486-90. PubMed ID: 17034234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries.
    Navarra MA; Manzi J; Lombardo L; Panero S; Scrosati B
    ChemSusChem; 2011 Jan; 4(1):125-30. PubMed ID: 21226222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blends of POSS-PEO(n=4)(8) and high molecular weight poly(ethylene oxide) as solid polymer electrolytes for lithium batteries.
    Zhang H; Kulkarni S; Wunder SL
    J Phys Chem B; 2007 Apr; 111(14):3583-90. PubMed ID: 17388529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired blend membranes based on adenine and guanine functional poly(glycidyl methacrylate).
    Aslan A; Bozkurt A
    Langmuir; 2010 Aug; 26(16):13655-61. PubMed ID: 20695617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.