BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 16509682)

  • 1. Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect.
    Schmidt J; Vogelsberger W
    J Phys Chem B; 2006 Mar; 110(9):3955-63. PubMed ID: 16509682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolution behaviour of a nanoparticle in a microscale volume of solvent: thermodynamic and kinetic considerations.
    Vogelsberger W; Schmidt J
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():8-16. PubMed ID: 19558228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles.
    Aromaa M; Keskinen H; Mäkelä JM
    Biomol Eng; 2007 Nov; 24(5):543-8. PubMed ID: 17950664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles.
    Belessi V; Romanos G; Boukos N; Lambropoulou D; Trapalis C
    J Hazard Mater; 2009 Oct; 170(2-3):836-44. PubMed ID: 19540670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing.
    von der Kammer F; Ottofuelling S; Hofmann T
    Environ Pollut; 2010 Dec; 158(12):3472-81. PubMed ID: 20724049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization.
    Matteucci ME; Hotze MA; Johnston KP; Williams RO
    Langmuir; 2006 Oct; 22(21):8951-9. PubMed ID: 17014140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physico-chemical characterization in the light of toxicological effects.
    Meissner T; Potthoff A; Richter V
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():35-9. PubMed ID: 19558232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle dissolution from the particle perspective: insights from particle sizing measurements.
    Elzey S; Grassian VH
    Langmuir; 2010 Aug; 26(15):12505-8. PubMed ID: 20590108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution.
    Zhang L; Liu N; Yang L; Lin Q
    J Hazard Mater; 2009 Oct; 170(2-3):1197-203. PubMed ID: 19553009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of nano-sized titanium dioxide in an aqueous environment: effects of pH, dissolved organic matter and divalent cations.
    Yang XN; Cui FY
    Water Sci Technol; 2013; 68(2):276-82. PubMed ID: 23863417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyapatite micro- and nanoparticles: nucleation and growth mechanisms in the presence of citrate species.
    Martins MA; Santos C; Almeida MM; Costa ME
    J Colloid Interface Sci; 2008 Feb; 318(2):210-6. PubMed ID: 17996882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanisms of passive dissolution of titanium in a model physiological environment.
    Healy KE; Ducheyne P
    J Biomed Mater Res; 1992 Mar; 26(3):319-38. PubMed ID: 1613024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles.
    Hyun BR; Zhong YW; Bartnik AC; Sun L; Abruña HD; Wise FW; Goodreau JD; Matthews JR; Leslie TM; Borrelli NF
    ACS Nano; 2008 Nov; 2(11):2206-12. PubMed ID: 19206384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium.
    Allouni ZE; Cimpan MR; Høl PJ; Skodvin T; Gjerdet NR
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):83-7. PubMed ID: 18980834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating.
    Kaman O; Pollert E; Veverka P; Veverka M; Hadová E; Knízek K; Marysko M; Kaspar P; Klementová M; Grünwaldová V; Vasseur S; Epherre R; Mornet S; Goglio G; Duguet E
    Nanotechnology; 2009 Jul; 20(27):275610. PubMed ID: 19531865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of intranasal instilled titanium dioxide nanoparticles on monoaminergic neurotransmitters of female mice at different exposure time].
    Wang JX; Li YF; Zhou GQ; Li B; Jiao F; Chen CY; Gao YX; Zhao YL; Chai ZF
    Zhonghua Yu Fang Yi Xue Za Zhi; 2007 Mar; 41(2):91-5. PubMed ID: 17605232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS).
    Liu J; Aruguete DM; Murayama M; Hochella MF
    Environ Sci Technol; 2009 Nov; 43(21):8178-83. PubMed ID: 19924941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution kinetics of nanodispersed gamma-alumina in aqueous solution at different pH: unusual kinetic size effect and formation of a new phase.
    Roelofs F; Vogelsberger W
    J Colloid Interface Sci; 2006 Nov; 303(2):450-9. PubMed ID: 16996074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.