These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 16509687)

  • 61. Formation of gold nanoparticles catalyzed by platinum nanoparticles: assessment of the catalytic mechanism.
    Njoki PN; Jacob A; Khan B; Luo J; Zhong CJ
    J Phys Chem B; 2006 Nov; 110(45):22503-9. PubMed ID: 17091993
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods.
    Huang H; Liu X; Zeng Y; Yu X; Liao B; Yi P; Chu PK
    Biomaterials; 2009 Oct; 30(29):5622-30. PubMed ID: 19625079
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Growth of well-aligned ZnO nanorods using auge catalyst by vapor phase transportation.
    Ha SY; Jung MN; Park SH; Ko HJ; Ko H; Oh DC; Yao T; Chang JH
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3624-7. PubMed ID: 17252824
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Surfactant-assisted route to synthesize well-aligned ZnO nanorod arrays on sol-gel-derived ZnO thin films.
    Dev A; Panda SK; Kar S; Chakrabarti S; Chaudhuri S
    J Phys Chem B; 2006 Jul; 110(29):14266-72. PubMed ID: 16854131
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Selective release of multiple DNA oligonucleotides from gold nanorods.
    Wijaya A; Schaffer SB; Pallares IG; Hamad-Schifferli K
    ACS Nano; 2009 Jan; 3(1):80-6. PubMed ID: 19206252
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of surfactant concentration on formation of high-aspect-ratio gold nanorods.
    Takenaka Y; Kawabata Y; Kitahata H; Yoshida M; Matsuzawa Y; Ohzono T
    J Colloid Interface Sci; 2013 Oct; 407():265-72. PubMed ID: 23830281
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structural evolution of gold nanorods during controlled secondary growth.
    Keul HA; Möller M; Bockstaller MR
    Langmuir; 2007 Sep; 23(20):10307-15. PubMed ID: 17713936
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives.
    Ye X; Jin L; Caglayan H; Chen J; Xing G; Zheng C; Doan-Nguyen V; Kang Y; Engheta N; Kagan CR; Murray CB
    ACS Nano; 2012 Mar; 6(3):2804-17. PubMed ID: 22376005
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications.
    Van Hoang N; Kumar S; Kim GH
    Nanotechnology; 2009 Mar; 20(12):125607. PubMed ID: 19420476
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chemical synthesis of gold nanowires in acidic solutions.
    Kim F; Sohn K; Wu J; Huang J
    J Am Chem Soc; 2008 Nov; 130(44):14442-3. PubMed ID: 18850710
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanoporous cellulose as metal nanoparticles support.
    Cai J; Kimura S; Wada M; Kuga S
    Biomacromolecules; 2009 Jan; 10(1):87-94. PubMed ID: 19053296
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synthesis of hybrid CdS-Au colloidal nanostructures.
    Saunders AE; Popov I; Banin U
    J Phys Chem B; 2006 Dec; 110(50):25421-9. PubMed ID: 17165989
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides.
    Costa JC; Ando RA; Sant'Ana AC; Rossi LM; Santos PS; Temperini ML; Corio P
    Phys Chem Chem Phys; 2009 Sep; 11(34):7491-8. PubMed ID: 19690724
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Studies on the kinetics of growth of silver nanoparticles in different surfactant solutions.
    Khan Z; Al-Thabaiti SA; El-Mossalamy EH; Obaid AY
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):284-8. PubMed ID: 19559581
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Multiplex biosensor using gold nanorods.
    Yu C; Irudayaraj J
    Anal Chem; 2007 Jan; 79(2):572-9. PubMed ID: 17222022
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Poly(ethylene glycol)-modified gold nanorods as a photothermal nanodevice for hyperthermia.
    Niidome T; Akiyama Y; Yamagata M; Kawano T; Mori T; Niidome Y; Katayama Y
    J Biomater Sci Polym Ed; 2009; 20(9):1203-15. PubMed ID: 19520008
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ultra-sensitive detection of cysteine by gold nanorod assembly.
    Huang H; Liu X; Hu T; Chu PK
    Biosens Bioelectron; 2010 May; 25(9):2078-83. PubMed ID: 20197234
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Optical transmission measurements of silver, silver-gold alloy and silver-gold segmented nanorods in thin film alumina.
    Evans PR; Hendren WR; Atkinson R; Pollard RJ
    Nanotechnology; 2008 Nov; 19(46):465708. PubMed ID: 21836263
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In vivo monitoring of intravenously injected gold nanorods using near-infrared light.
    Niidome T; Akiyama Y; Shimoda K; Kawano T; Mori T; Katayama Y; Niidome Y
    Small; 2008 Jul; 4(7):1001-7. PubMed ID: 18581412
    [TBL] [Abstract][Full Text] [Related]  

  • 80. pH-triggered assembly of gold nanorods.
    Orendorff CJ; Hankins PL; Murphy CJ
    Langmuir; 2005 Mar; 21(5):2022-6. PubMed ID: 15723505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.