These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 16509727)
1. Effect of substrate temperature on morphology and electrochemical performance of radio frequency magnetron sputtered lithium nickel vanadate films used as negative electrodes for lithium microbatteries. Reddy MV; Pecquenard B; Vinatier P; Levasseur A J Phys Chem B; 2006 Mar; 110(9):4301-6. PubMed ID: 16509727 [TBL] [Abstract][Full Text] [Related]
2. Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering. Bünting A; Uhlenbruck S; Sebold D; Buchkremer HP; Vaßen R ACS Appl Mater Interfaces; 2015 Oct; 7(40):22594-600. PubMed ID: 26381359 [TBL] [Abstract][Full Text] [Related]
3. Effect of lithia and substrate on the electrochemical performance of a lithia/cobalt oxide composite thin-film anode. Yu Y; Shi Y; Chen CH Chem Asian J; 2006 Dec; 1(6):826-31. PubMed ID: 17441125 [TBL] [Abstract][Full Text] [Related]
4. Improved electrochemical performance of LiCoO₂ electrodes with ZnO coating by radio frequency magnetron sputtering. Dai X; Wang L; Xu J; Wang Y; Zhou A; Li J ACS Appl Mater Interfaces; 2014 Sep; 6(18):15853-9. PubMed ID: 25158228 [TBL] [Abstract][Full Text] [Related]
5. Influence of discharge power level on the properties of hydroxyapatite films deposited on Ti6A14V with RF magnetron sputtering. van Dijk K; Schaeken HG; Wolke JC; Marée CH; Habraken FH; Verhoeven J; Jansen JA J Biomed Mater Res; 1995 Feb; 29(2):269-76. PubMed ID: 7738075 [TBL] [Abstract][Full Text] [Related]
6. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries. Ng SH; Tran N; Bramnik KG; Hibst H; Novák P Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463 [TBL] [Abstract][Full Text] [Related]
7. Structural properties of lithium thio-germanate thin film electrolytes grown by radio frequency sputtering. Seo I; Martin SW Inorg Chem; 2011 Mar; 50(6):2143-50. PubMed ID: 21323361 [TBL] [Abstract][Full Text] [Related]
8. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries. Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504 [TBL] [Abstract][Full Text] [Related]
9. Sputtered Porous Li-Fe-P-O Film Cathodes Prepared by Radio Frequency Sputtering for Li-ion Microbatteries. Sugiawati VA; Vacandio F; Perrin-Pellegrino C; Galeyeva A; Kurbatov AP; Djenizian T Sci Rep; 2019 Aug; 9(1):11172. PubMed ID: 31371758 [TBL] [Abstract][Full Text] [Related]
10. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. Chang K; Chen W ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610 [TBL] [Abstract][Full Text] [Related]
11. Compositional and electrochemical characterization of noble metal-diamondlike carbon nanocomposite thin films. Menegazzo N; Jin C; Narayan RJ; Mizaikoff B Langmuir; 2007 Jun; 23(12):6812-8. PubMed ID: 17489607 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, characterization, and electrochemical application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-Coated Ni(OH)2 tubes. Li W; Zhang S; Chen J J Phys Chem B; 2005 Jul; 109(29):14025-32. PubMed ID: 16852761 [TBL] [Abstract][Full Text] [Related]
13. Nanocolumnar structured porous Cu-Sn thin film as anode material for lithium-ion batteries. Polat DB; Lu J; Abouimrane A; Keles O; Amine K ACS Appl Mater Interfaces; 2014 Jul; 6(14):10877-85. PubMed ID: 24712436 [TBL] [Abstract][Full Text] [Related]
14. Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods. Li W; Cheng F; Tao Z; Chen J J Phys Chem B; 2006 Jan; 110(1):119-24. PubMed ID: 16471508 [TBL] [Abstract][Full Text] [Related]
15. Porous α-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability. Ma F; Yuan A; Xu J; Hu P ACS Appl Mater Interfaces; 2015 Jul; 7(28):15531-41. PubMed ID: 26132052 [TBL] [Abstract][Full Text] [Related]
16. Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques. Bhaskaran M; Sriram S; Holland AS; Evans PJ Micron; 2009 Jan; 40(1):99-103. PubMed ID: 18276146 [TBL] [Abstract][Full Text] [Related]
17. Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes. Qiu B; Wang J; Xia Y; Wei Z; Han S; Liu Z ACS Appl Mater Interfaces; 2014 Jun; 6(12):9185-93. PubMed ID: 24857766 [TBL] [Abstract][Full Text] [Related]
19. Thorough characterization of sputtered CuO thin films used as conversion material electrodes for lithium batteries. Pecquenard B; Le Cras F; Poinot D; Sicardy O; Manaud JP ACS Appl Mater Interfaces; 2014 Mar; 6(5):3413-20. PubMed ID: 24521248 [TBL] [Abstract][Full Text] [Related]
20. Microstructural investigation of nickel silicide thin films and the silicide-silicon interface using transmission electron microscopy. Bhaskaran M; Sriram S; Mitchell DR; Short KT; Holland AS; Mitchell A Micron; 2009 Jan; 40(1):11-4. PubMed ID: 18337112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]