These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16509730)

  • 1. A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension.
    Lee D; Kim JW; Kim BG
    J Phys Chem B; 2006 Mar; 110(9):4323-8. PubMed ID: 16509730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic liquid-based stable nanofluids containing gold nanoparticles.
    Wang B; Wang X; Lou W; Hao J
    J Colloid Interface Sci; 2011 Oct; 362(1):5-14. PubMed ID: 21723564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermophysical properties of interfacial layer in nanofluids.
    Lee D
    Langmuir; 2007 May; 23(11):6011-8. PubMed ID: 17441736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of electrokinetic properties of nanofluids.
    Murshed SM; Leong KC; Yang C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5966-71. PubMed ID: 19198333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration and size dependence of nano-silver dispersed water based nanofluids.
    Paul G; Sarkar S; Pal T; Das PK; Manna I
    J Colloid Interface Sci; 2012 Apr; 371(1):20-7. PubMed ID: 22284450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory.
    Timofeeva EV; Gavrilov AN; McCloskey JM; Tolmachev YV; Sprunt S; Lopatina LM; Selinger JV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061203. PubMed ID: 18233838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced thermal conductivity of nanofluids diagnosis by molecular dynamics simulations.
    Teng KL; Hsiao PY; Hung SW; Chieng CC; Liu MS; Lu MC
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3710-8. PubMed ID: 19051928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid).
    Amrollahi A; Hamidi AA; Rashidi AM
    Nanotechnology; 2008 Aug; 19(31):315701. PubMed ID: 21828793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersion and surface characteristics of nanosilica suspensions.
    Kumar R; Milanova D
    Ann N Y Acad Sci; 2009 Apr; 1161():472-83. PubMed ID: 19426340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of thermal conductivity and diffusivity in nanostructural semiconductors.
    Yang CC; Armellin J; Li S
    J Phys Chem B; 2008 Feb; 112(5):1482-6. PubMed ID: 18193865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusiophoresis in a suspension of charge-regulating colloidal spheres.
    Keh HJ; Li YL
    Langmuir; 2007 Jan; 23(3):1061-72. PubMed ID: 17241015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency dependent enhancement of heat transport in a nanofluid with ZnO nanoparticles.
    Neogy RK; Raychaudhuri AK
    Nanotechnology; 2009 Jul; 20(30):305706. PubMed ID: 19584421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of heterogeneously charged nanoparticles on a variably charged surface by the extended surface complexation approach: charge regulation, chemical heterogeneity, and surface complexation.
    Saito T; Koopal LK; Nagasaki S; Tanaka S
    J Phys Chem B; 2008 Feb; 112(5):1339-49. PubMed ID: 18189380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodiffusion in model nanofluids by molecular dynamics simulations.
    Galliero G; Volz S
    J Chem Phys; 2008 Feb; 128(6):064505. PubMed ID: 18282054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal conductivity of interfacial layers in nanofluids.
    Liang Z; Tsai HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041602. PubMed ID: 21599170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward nanofluids of ultra-high thermal conductivity.
    Wang L; Fan J
    Nanoscale Res Lett; 2011 Feb; 6(1):153. PubMed ID: 21711677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Modification Approach to TiO2 Nanofluids with High Particle Concentration, Low Viscosity, and Electrochemical Activity.
    Sen S; Govindarajan V; Pelliccione CJ; Wang J; Miller DJ; Timofeeva EV
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20538-47. PubMed ID: 26322861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrete bivariate population balance modelling of heteroaggregation processes.
    RolliƩ S; Briesen H; Sundmacher K
    J Colloid Interface Sci; 2009 Aug; 336(2):551-64. PubMed ID: 19423121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of zinc oxide nanofluids prepared with aggregated nanocrystalline powders.
    Leonard JP; Chung SJ; Nettleship I; Soong Y; Martello DV; Chyu MK
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6361-6. PubMed ID: 19205207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical conductivity of aqueous salt-free concentrated suspensions. Effects of water dissociation and CO2 contamination.
    Carrique F; Ruiz-Reina E
    J Phys Chem B; 2009 Jul; 113(30):10261-70. PubMed ID: 19580303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.