These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 16509730)

  • 21. Model for heat conduction in nanofluids.
    Kumar DH; Patel HE; Kumar VR; Sundararajan T; Pradeep T; Das SK
    Phys Rev Lett; 2004 Oct; 93(14):144301. PubMed ID: 15524799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parametrization of a reactive force field for aluminum hydride.
    Ojwang JG; van Santen RA; Kramer GJ; van Duin AC; Goddard WA
    J Chem Phys; 2009 Jul; 131(4):044501. PubMed ID: 19655888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocarbon nanofluids: morphology and nanostructure comparisons.
    Vander Wal RL; Mozes SD; Pushkarev V
    Nanotechnology; 2009 Mar; 20(10):105702. PubMed ID: 19417530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon nanohorns-based nanofluids as direct sunlight absorbers.
    Sani E; Barison S; Pagura C; Mercatelli L; Sansoni P; Fontani D; Jafrancesco D; Francini F
    Opt Express; 2010 Mar; 18(5):5179-87. PubMed ID: 20389531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrophoretic motion of a spherical particle with a symmetric nonuniform surface charge distribution in a nanotube.
    Qian S; Joo SW; Hou WS; Zhao X
    Langmuir; 2008 May; 24(10):5332-40. PubMed ID: 18399647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Novel Equivalent Agglomeration Model for Heat Conduction Enhancement in Nanofluids.
    Sui J; Zheng L; Zhang X; Chen Y; Cheng Z
    Sci Rep; 2016 Jan; 6():19560. PubMed ID: 26777389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tortuosity of porous particles.
    Barrande M; Bouchet R; Denoyel R
    Anal Chem; 2007 Dec; 79(23):9115-21. PubMed ID: 17979254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of fractal particles using acoustics, electroacoustics, light scattering, image analysis, and conductivity.
    Dukhin AS; Fluck D; Goetz PJ; Shilov VN; Dukhin SS
    Langmuir; 2007 May; 23(10):5338-51. PubMed ID: 17428071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of self-electrophoretic motion of a spherical particle in a nanotube: effect of nonuniform surface charge density.
    Qian S; Joo SW
    Langmuir; 2008 May; 24(9):4778-84. PubMed ID: 18366230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles.
    Roca AG; Veintemillas-Verdaguer S; Port M; Robic C; Serna CJ; Morales MP
    J Phys Chem B; 2009 May; 113(19):7033-9. PubMed ID: 19378984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal conductivity of nanoscale colloidal solutions (nanofluids).
    Prasher R; Bhattacharya P; Phelan PE
    Phys Rev Lett; 2005 Jan; 94(2):025901. PubMed ID: 15698196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite.
    Weng L; Van Riemsdijk WH; Koopal LK; Hiemstra T
    J Colloid Interface Sci; 2006 Oct; 302(2):442-57. PubMed ID: 16887135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation on dispersion behavior of the aqueous copper nano-suspensions.
    Li X; Zhu D; Wang X
    J Colloid Interface Sci; 2007 Jun; 310(2):456-63. PubMed ID: 17395195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical and analytical studies of the electrical conductivity of a concentrated colloidal suspension.
    Cuquejo J; Jiménez ML; Delgado AV; Arroyo FJ; Carrique F
    J Phys Chem B; 2006 Mar; 110(12):6179-89. PubMed ID: 16553432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement and modeling of the surface potential evolution of hydrated cement pastes as a function of degradation.
    Pointeau I; Reiller P; Macé N; Landesman C; Coreau N
    J Colloid Interface Sci; 2006 Aug; 300(1):33-44. PubMed ID: 16631770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inelastic electron transport in polymer nanofibers.
    Zimbovskaya NA
    J Chem Phys; 2008 Sep; 129(11):114705. PubMed ID: 19044978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of nanoparticles on the liquid-gas surface tension of Bi2Te3 nanofluids.
    Vafaei S; Purkayastha A; Jain A; Ramanath G; Borca-Tasciuc T
    Nanotechnology; 2009 May; 20(18):185702. PubMed ID: 19420625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.