BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16509899)

  • 1. Head size constrains forebrain development and evolution in ray-finned fishes.
    Striedter GF; Northcutt RG
    Evol Dev; 2006; 8(2):215-22. PubMed ID: 16509899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forebrain evolution in bony fishes.
    Northcutt RG
    Brain Res Bull; 2008 Mar; 75(2-4):191-205. PubMed ID: 18331871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic perspectives in the evolution of parental care in ray-finned fishes.
    Mank JE; Promislow DE; Avise JC
    Evolution; 2005 Jul; 59(7):1570-8. PubMed ID: 16153042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stalking the everted telencephalon: comparisons of forebrain organization in basal ray-finned fishes and teleosts.
    Braford MR
    Brain Behav Evol; 2009; 74(1):56-76. PubMed ID: 19729896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evolutionary interpretation of teleostean forebrain anatomy.
    Mueller T; Wullimann MF
    Brain Behav Evol; 2009; 74(1):30-42. PubMed ID: 19729894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of gastrulation in the ray-finned (actinopterygian) fishes.
    Cooper MS; Virta VC
    J Exp Zool B Mol Dev Evol; 2007 Sep; 308(5):591-608. PubMed ID: 17285635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On old and new comparative neurological sinners: the evolutionary importance of the membranous parts of the actinopterygian forebrain and their sites of attachment.
    Nieuwenhuys R
    J Comp Neurol; 2009 Sep; 516(2):87-93. PubMed ID: 19575446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Everted Amygdala of Ray-Finned Fish: Zebrafish Makes a Case.
    Mueller T
    Brain Behav Evol; 2022; 97(6):321-335. PubMed ID: 35760049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study.
    Li C; Ortí G; Zhang G; Lu G
    BMC Evol Biol; 2007 Mar; 7():44. PubMed ID: 17374158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lhx2 mediates the activity of Six3 in zebrafish forebrain growth.
    Ando H; Kobayashi M; Tsubokawa T; Uyemura K; Furuta T; Okamoto H
    Dev Biol; 2005 Nov; 287(2):456-68. PubMed ID: 16226737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional reconstructions of the developing forebrain in rat embryos.
    Bayer SA; Zhang X; Russo RJ; Altman J
    Neuroimage; 1994 Nov; 1(4):296-307. PubMed ID: 9343579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New perspective on the regionalization of the anterior forebrain in Osteichthyes.
    Yamamoto K; Bloch S; Vernier P
    Dev Growth Differ; 2017 May; 59(4):175-187. PubMed ID: 28470718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunohistochemical organization of the forebrain in the white sturgeon, Acipenser transmontanus.
    Piñuela C; Northcutt RG
    Brain Behav Evol; 2007; 69(4):229-53. PubMed ID: 17299256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogeny and phylogeny of the yolk extension in embryonic cypriniform fishes.
    Virta VC; Cooper MS
    J Exp Zool B Mol Dev Evol; 2009 May; 312B(3):196-223. PubMed ID: 19206142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topography and topology of the teleost telencephalon: a paradox resolved.
    Butler AB
    Neurosci Lett; 2000 Oct; 293(2):95-8. PubMed ID: 11027842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new interpretation on the homology of the teleostean telencephalon based on hodology and a new eversion model.
    Yamamoto N; Ishikawa Y; Yoshimoto M; Xue HG; Bahaxar N; Sawai N; Yang CY; Ozawa H; Ito H
    Brain Behav Evol; 2007; 69(2):96-104. PubMed ID: 17230017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Telencephalic eversion in embryos and early larvae of four teleost species.
    Folgueira M; Clarke JDW
    Evol Dev; 2024 Mar; 26(2):e12474. PubMed ID: 38425004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development and general morphology of the telencephalon of actinopterygian fishes: synopsis, documentation and commentary.
    Nieuwenhuys R
    Brain Struct Funct; 2011 Jan; 215(3-4):141-57. PubMed ID: 20976604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subdivisions of the adult zebrafish subpallium by molecular marker analysis.
    Ganz J; Kaslin J; Freudenreich D; Machate A; Geffarth M; Brand M
    J Comp Neurol; 2012 Feb; 520(3):633-55. PubMed ID: 21858823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gli3 is required autonomously for dorsal telencephalic cells to adopt appropriate fates during embryonic forebrain development.
    Quinn JC; Molinek M; Mason JO; Price DJ
    Dev Biol; 2009 Mar; 327(1):204-15. PubMed ID: 19121302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.