These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 16510192)
1. Structures of the high-valent metal-ion haem-oxygen intermediates in peroxidases, oxygenases and catalases. Hersleth HP; Ryde U; Rydberg P; Görbitz CH; Andersson KK J Inorg Biochem; 2006 Apr; 100(4):460-76. PubMed ID: 16510192 [TBL] [Abstract][Full Text] [Related]
2. Protein-based radicals in the catalase-peroxidase of synechocystis PCC6803: a multifrequency EPR investigation of wild-type and variants on the environment of the heme active site. Ivancich A; Jakopitsch C; Auer M; Un S; Obinger C J Am Chem Soc; 2003 Nov; 125(46):14093-102. PubMed ID: 14611246 [TBL] [Abstract][Full Text] [Related]
4. QM/MM studies of the electronic structure of the compound I intermediate in cytochrome c peroxidase and ascorbate peroxidase. Bathelt CM; Mulholland AJ; Harvey JN Dalton Trans; 2005 Nov; (21):3470-6. PubMed ID: 16234927 [TBL] [Abstract][Full Text] [Related]
5. The structures and electronic configuration of compound I intermediates of Helicobacter pylori and Penicillium vitale catalases determined by X-ray crystallography and QM/MM density functional theory calculations. Alfonso-Prieto M; Borovik A; Carpena X; Murshudov G; Melik-Adamyan W; Fita I; Rovira C; Loewen PC J Am Chem Soc; 2007 Apr; 129(14):4193-205. PubMed ID: 17358056 [TBL] [Abstract][Full Text] [Related]
6. The dynamic role of distal side residues in heme hydroperoxidase catalysis. Interplay between X-ray crystallography and ab initio MD simulations. Vidossich P; Alfonso-Prieto M; Carpena X; Fita I; Loewen PC; Rovira C Arch Biochem Biophys; 2010 Aug; 500(1):37-44. PubMed ID: 20447375 [TBL] [Abstract][Full Text] [Related]
7. Versatility of the electronic structure of compound I in catalase-peroxidases. Vidossich P; Alfonso-Prieto M; Carpena X; Loewen PC; Fita I; Rovira C J Am Chem Soc; 2007 Nov; 129(44):13436-46. PubMed ID: 17927173 [TBL] [Abstract][Full Text] [Related]
8. QM/MM modeling of compound I active species in cytochrome P450, cytochrome C peroxidase, and ascorbate peroxidase. Harvey JN; Bathelt CM; Mulholland AJ J Comput Chem; 2006 Sep; 27(12):1352-62. PubMed ID: 16788912 [TBL] [Abstract][Full Text] [Related]
9. Distinct role of specific tryptophans in facilitating electron transfer or as [Fe(IV)=O Trp(*)] intermediates in the peroxidase reaction of Bulkholderia pseudomallei catalase-peroxidase: a multifrequency EPR spectroscopy investigation. Colin J; Wiseman B; Switala J; Loewen PC; Ivancich A J Am Chem Soc; 2009 Jun; 131(24):8557-63. PubMed ID: 19530730 [TBL] [Abstract][Full Text] [Related]
10. An iron hydroxide moiety in the 1.35 A resolution structure of hydrogen peroxide derived myoglobin compound II at pH 5.2. Hersleth HP; Dalhus B; Görbitz CH; Andersson KK J Biol Inorg Chem; 2002 Mar; 7(3):299-304. PubMed ID: 11935353 [TBL] [Abstract][Full Text] [Related]
11. Structure and mechanism in the bacterial dihaem cytochrome c peroxidases. Pettigrew GW; Echalier A; Pauleta SR J Inorg Biochem; 2006 Apr; 100(4):551-67. PubMed ID: 16434100 [TBL] [Abstract][Full Text] [Related]
12. Application of Badger's rule to heme and non-heme iron-oxygen bonds: an examination of ferryl protonation states. Green MT J Am Chem Soc; 2006 Feb; 128(6):1902-6. PubMed ID: 16464091 [TBL] [Abstract][Full Text] [Related]
13. On the status of ferryl protonation. Behan RK; Green MT J Inorg Biochem; 2006 Apr; 100(4):448-59. PubMed ID: 16500711 [TBL] [Abstract][Full Text] [Related]
14. High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions. Nam W Acc Chem Res; 2007 Jul; 40(7):522-31. PubMed ID: 17469792 [TBL] [Abstract][Full Text] [Related]
15. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes. Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661 [TBL] [Abstract][Full Text] [Related]
16. Density functional theory (DFT) and combined quantum mechanical/molecular mechanics (QM/MM) studies on the oxygen activation step in nitric oxide synthase enzymes. de Visser SP Biochem Soc Trans; 2009 Apr; 37(Pt 2):373-7. PubMed ID: 19290865 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic and quantum chemical characterization of the electronic structure and bonding in a non-heme FeIV[double bond]O complex. Decker A; Rohde JU; Que L; Solomon EI J Am Chem Soc; 2004 May; 126(17):5378-9. PubMed ID: 15113207 [TBL] [Abstract][Full Text] [Related]
18. Protonation of the proximal histidine ligand in heme peroxidases. Heimdal J; Rydberg P; Ryde U J Phys Chem B; 2008 Feb; 112(8):2501-10. PubMed ID: 18251539 [TBL] [Abstract][Full Text] [Related]
19. Unusual Cys-Tyr covalent bond in a large catalase. Díaz A; Horjales E; Rudiño-Piñera E; Arreola R; Hansberg W J Mol Biol; 2004 Sep; 342(3):971-85. PubMed ID: 15342250 [TBL] [Abstract][Full Text] [Related]
20. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines. Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]