These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 16510385)
1. Scaling of angiosperm xylem structure with safety and efficiency. Hacke UG; Sperry JS; Wheeler JK; Castro L Tree Physiol; 2006 Jun; 26(6):689-701. PubMed ID: 16510385 [TBL] [Abstract][Full Text] [Related]
2. Intra-specific trends of lumen and wall resistivities of vessels within the stem xylem vary among three woody plants. Ooeda H; Terashima I; Taneda H Tree Physiol; 2018 Feb; 38(2):223-231. PubMed ID: 29036681 [TBL] [Abstract][Full Text] [Related]
3. [Divergence between ring- and diffuse-porous wood types in broadleaf trees of Changbai Mountains results in substantial differences in hydraulic traits.]. Yin XH; Hao GY Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):352-360. PubMed ID: 29692047 [TBL] [Abstract][Full Text] [Related]
4. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus. Hajek P; Leuschner C; Hertel D; Delzon S; Schuldt B Tree Physiol; 2014 Jul; 34(7):744-56. PubMed ID: 25009155 [TBL] [Abstract][Full Text] [Related]
5. Xylem function of arid-land shrubs from California, USA: an ecological and evolutionary analysis. Hacke UG; Jacobsen AL; Pratt RB Plant Cell Environ; 2009 Oct; 32(10):1324-33. PubMed ID: 19453480 [TBL] [Abstract][Full Text] [Related]
6. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Scholz A; Rabaey D; Stein A; Cochard H; Smets E; Jansen S Tree Physiol; 2013 Jul; 33(7):684-94. PubMed ID: 23933827 [TBL] [Abstract][Full Text] [Related]
7. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. Lens F; Sperry JS; Christman MA; Choat B; Rabaey D; Jansen S New Phytol; 2011 May; 190(3):709-23. PubMed ID: 21054413 [TBL] [Abstract][Full Text] [Related]
8. Root resistance to cavitation is accurately measured using a centrifuge technique. Pratt RB; MacKinnon ED; Venturas MD; Crous CJ; Jacobsen AL Tree Physiol; 2015 Feb; 35(2):185-96. PubMed ID: 25716876 [TBL] [Abstract][Full Text] [Related]
9. Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms. Tixier A; Herbette S; Jansen S; Capron M; Tordjeman P; Cochard H; Badel E Ann Bot; 2014 Aug; 114(2):325-34. PubMed ID: 24918205 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. Li Y; Sperry JS; Taneda H; Bush SE; Hacke UG New Phytol; 2008; 177(2):558-568. PubMed ID: 18028295 [TBL] [Abstract][Full Text] [Related]
11. Similar hydraulic efficiency and safety across vesselless angiosperms and vessel-bearing species with scalariform perforation plates. Trueba S; Delzon S; Isnard S; Lens F J Exp Bot; 2019 Jun; 70(12):3227-3240. PubMed ID: 30921455 [TBL] [Abstract][Full Text] [Related]
12. A case-study of water transport in co-occurring ring- versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Taneda H; Sperry JS Tree Physiol; 2008 Nov; 28(11):1641-51. PubMed ID: 18765369 [TBL] [Abstract][Full Text] [Related]
13. Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. Christman MA; Sperry JS; Smith DD New Phytol; 2012 Feb; 193(3):713-720. PubMed ID: 22150784 [TBL] [Abstract][Full Text] [Related]
14. Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees. Zhang Y; Lamarque LJ; Torres-Ruiz JM; Schuldt B; Karimi Z; Li S; Qin DW; Bittencourt P; Burlett R; Cao KF; Delzon S; Oliveira R; Pereira L; Jansen S Tree Physiol; 2018 Jul; 38(7):1016-1025. PubMed ID: 29474679 [TBL] [Abstract][Full Text] [Related]
15. Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem? Jansen S; Gortan E; Lens F; Lo Gullo MA; Salleo S; Scholz A; Stein A; Trifilò P; Nardini A New Phytol; 2011 Jan; 189(1):218-28. PubMed ID: 20840611 [TBL] [Abstract][Full Text] [Related]
16. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function. Pittermann J; Choat B; Jansen S; Stuart SA; Lynn L; Dawson TE Plant Physiol; 2010 Aug; 153(4):1919-31. PubMed ID: 20551212 [TBL] [Abstract][Full Text] [Related]
17. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. Choat B; Cobb AR; Jansen S New Phytol; 2008; 177(3):608-626. PubMed ID: 18086228 [TBL] [Abstract][Full Text] [Related]
18. Changes of hydraulic conductivity during dehydration and rehydration in Quercus serrata Thunb. and Betula platyphylla var. japonica Hara: the effect of xylem structures. Ogasa M; Miki N; Yoshikawa K Tree Physiol; 2010 May; 30(5):608-17. PubMed ID: 20368339 [TBL] [Abstract][Full Text] [Related]
20. Wood structure and function change with maturity: Age of the vascular cambium is associated with xylem changes in current-year growth. Rodriguez-Zaccaro FD; Valdovinos-Ayala J; Percolla MI; Venturas MD; Pratt RB; Jacobsen AL Plant Cell Environ; 2019 Jun; 42(6):1816-1831. PubMed ID: 30707440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]