These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16510387)

  • 61. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species.
    Christensen-Dalsgaard KK; Tyree MT; Mussone PG
    Tree Physiol; 2011 Apr; 31(4):361-8. PubMed ID: 21470981
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Water relations and drought-induced embolism in olive (Olea europaea) varieties 'Meski' and 'Chemlali' during severe drought.
    Ennajeh M; Tounekti T; Vadel AM; Khemira H; Cochard H
    Tree Physiol; 2008 Jun; 28(6):971-6. PubMed ID: 18381277
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis.
    Granier A; Anfodillo T; Sabatti M; Cochard H; Dreyer E; Tomasi M; Valentini R; Bréda N
    Tree Physiol; 1994 Dec; 14(12):1383-96. PubMed ID: 14967611
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Recycling of nitrogen in the xylem of Prunus avium trees starts when spring remobilization of internal reserves declines.
    Grassi G; Millard P; Gioacchini P; Tagliavini M
    Tree Physiol; 2003 Oct; 23(15):1061-8. PubMed ID: 12975130
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use.
    Ford CR; McGuire MA; Mitchell RJ; Teskey RO
    Tree Physiol; 2004 Mar; 24(3):241-9. PubMed ID: 14704134
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microelectrode technique for in situ measurement of carbon dioxide concentrations in xylem sap of trees.
    McGuire MA; Teskey RO
    Tree Physiol; 2002 Aug; 22(11):807-11. PubMed ID: 12184985
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants.
    Burgess SS; Adams MA; Turner NC; Beverly CR; Ong CK; Khan AA; Bleby TM
    Tree Physiol; 2001 Jun; 21(9):589-98. PubMed ID: 11390303
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A biophysical analysis of stem and root diameter variations in woody plants.
    Génard M; Fishman S; Vercambre G; Huguet JG; Bussi C; Besset J; Habib R
    Plant Physiol; 2001 May; 126(1):188-202. PubMed ID: 11351082
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The effect of aqueous transport of CO(2) in xylem sap on gas exchange in woody plants.
    Levy PE; Meir P; Allen SJ; Jarvis PG
    Tree Physiol; 1999 Jan; 19(1):53-58. PubMed ID: 12651332
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique.
    Vertessy RA; Hatton TJ; Reece P; O'Sullivan SK; Benyon RG
    Tree Physiol; 1997 Dec; 17(12):747-56. PubMed ID: 14759884
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques.
    Meinzer FC; Brooks JR; Domec JC; Gartner BL; Warren JM; Woodruff DR; Bible K; Shaw DC
    Plant Cell Environ; 2006 Jan; 29(1):105-14. PubMed ID: 17086757
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions.
    Lu P; Müller WJ; Chacko EK
    Tree Physiol; 2000 May; 20(10):683-692. PubMed ID: 12651518
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Measurement of sap flow in roots of woody plants: a commentary.
    Burgess SS; Adams MA; Bleby TM
    Tree Physiol; 2000 Jul; 20(13):909-13. PubMed ID: 11303581
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Winter variation in xylem sap pH of walnut trees: involvement of plasma membrane H+-ATPase of vessel-associated cells.
    Alves G; Ameglio T; Guilliot A; Fleurat-Lessard P; Lacointe A; Sakr S; Petel G; Julien JL
    Tree Physiol; 2004 Jan; 24(1):99-105. PubMed ID: 14652219
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of tissue heat balance- and thermal dissipation-derived sap flow measurements in ring-porous oaks and a pine.
    Renninger HJ; Schäfer KV
    Front Plant Sci; 2012; 3():103. PubMed ID: 22661978
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Plant hydraulics: new discoveries in the pipeline.
    Pratt RB; Jacobsen AL; North GB; Sack L; Schenk HJ
    New Phytol; 2008; 179(3):590-593. PubMed ID: 18715323
    [No Abstract]   [Full Text] [Related]  

  • 77. On the heat-pulse method for the measurement of apparent sap velocity in stems.
    Stone JF; Shirazi GA
    Planta; 1975 Jan; 122(2):169-77. PubMed ID: 24435966
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method: measurement errors and sampling strategies.
    Hatton TJ; Moore SJ; Reece PH
    Tree Physiol; 1995 Apr; 15(4):219-27. PubMed ID: 14965961
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Daily sap flow and maximum daily trunk shrinkage measurements for diagnosing water stress in early maturing peach trees during the post-harvest period.
    Conejero W; Alarcón JJ; García-Orellana Y; Abrisqueta JM; Torrecillas A
    Tree Physiol; 2007 Jan; 27(1):81-8. PubMed ID: 17169909
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Venturi effect can help cure our trees.
    Montecchio L
    J Vis Exp; 2013 Oct; (80):. PubMed ID: 24121874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.