These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 165107)
1. Valinomycin sensitivity of cytochrome c oxidase vesicles. Wrigglesworth JM; Nicholls P Biochem Soc Trans; 1975; 3(1):168-71. PubMed ID: 165107 [No Abstract] [Full Text] [Related]
2. Energized transport of potassium ions in the absence of valinomycin by cytochrome c oxidase-reconstituted vesicles. Singh AP; Nicholls P Biochim Biophys Acta; 1984 Nov; 777(2):194-200. PubMed ID: 6091755 [TBL] [Abstract][Full Text] [Related]
3. Fluorescein conjugates of cytochrome c as internal pH probes in submitochondrial particles. Thomas JA; Johnson DL Biochem Biophys Res Commun; 1975 Aug; 65(3):931-9. PubMed ID: 239716 [No Abstract] [Full Text] [Related]
4. Control of respiration in proteoliposomes containing cytochrome aa3. I. Stimulation by valinomycin and uncoupler. Hansen FB; Miller M; Nicholls P Biochim Biophys Acta; 1978 Jun; 502(3):385-99. PubMed ID: 207320 [TBL] [Abstract][Full Text] [Related]
10. Control of respiration in sonicated cytochrome oxidase proteoliposomes by gated and ungated ionophores. Shaughnessy S; Nicholls P Biochem Biophys Res Commun; 1985 Apr; 128(2):1025-30. PubMed ID: 2986617 [TBL] [Abstract][Full Text] [Related]
11. Evidence for a structural interaction between ATP synthetase and cytochrome c oxidase in mitochondria. Wilson DF; Fairs K Arch Biochem Biophys; 1974 Aug; 163(2):491-7. PubMed ID: 4370007 [No Abstract] [Full Text] [Related]
12. Characteristics and nature of redox-linked proton transfer reactions in cytochrome c oxidase of mitochondria. Papa S; Capitanio N; De Nitto E; Izzo G J Inorg Biochem; 1985; 23(3-4):317-25. PubMed ID: 2410563 [TBL] [Abstract][Full Text] [Related]
14. Control of cytochrome c oxidase activity by pH and the electrical potential gradient occurs at separate electron transfer steps and does not require subunit III. Gregory L; Ferguson-Miller S Ann N Y Acad Sci; 1988; 550():260-8. PubMed ID: 2854398 [No Abstract] [Full Text] [Related]
15. Membrane potentials in reconstituted cytochrome c oxidase proteoliposomes determined by butyltriphenyl phosphonium cation distribution. Singh AP; Nicholls P Arch Biochem Biophys; 1986 Mar; 245(2):436-45. PubMed ID: 3006593 [TBL] [Abstract][Full Text] [Related]
16. Fusion of phospholipid vesicles reconstituted with cytochrome c oxidase and mitochondrial hydrophobic protein. Miller C; Racker E J Membr Biol; 1976 May; 26(4):319-33. PubMed ID: 180295 [TBL] [Abstract][Full Text] [Related]
17. Cation transport in cytochrome oxidase reconstituted vesicles. Gutweniger H; Massari S; Beltrame M; Colonna R Biochim Biophys Acta; 1977 Feb; 459(2):216-24. PubMed ID: 13827 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated with oxidation of endogenous ubiquinol. Papa S; Lorusso M; Guerrieri F Biochim Biophys Acta; 1975 Jun; 387(3):425-40. PubMed ID: 237540 [TBL] [Abstract][Full Text] [Related]
19. Valinomycin binds stoichiometrically to cytochrome c oxidase and changes its structure and function. Steverding D; Kadenbach B Biochem Biophys Res Commun; 1989 May; 160(3):1132-9. PubMed ID: 2471518 [TBL] [Abstract][Full Text] [Related]
20. Fatty acids as modulators of cytochrome c oxidase in proteoliposomes. Sharpe M; Perin I; Wrigglesworth J; Nicholls P Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):557-61. PubMed ID: 8973566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]