These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16510778)

  • 1. Conduction deficits and membrane disruption of spinal cord axons as a function of magnitude and rate of strain.
    Shi R; Whitebone J
    J Neurophysiol; 2006 Jun; 95(6):3384-90. PubMed ID: 16510778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathological changes of isolated spinal cord axons in response to mechanical stretch.
    Shi R; Pryor JD
    Neuroscience; 2002; 110(4):765-77. PubMed ID: 11934483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4-Aminopyridine derivatives enhance impulse conduction in guinea-pig spinal cord following traumatic injury.
    McBride JM; Smith DT; Byrn SR; Borgens RB; Shi R
    Neuroscience; 2007 Aug; 148(1):44-52. PubMed ID: 17629412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The peroxynitrite donor 3-morpholinosydnonimine induces reversible changes in electrophysiological properties of neurons of the guinea-pig spinal cord.
    Ashki N; Hayes KC; Bao F
    Neuroscience; 2008 Sep; 156(1):107-17. PubMed ID: 18662749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations between tissue-level stresses and strains and cellular damage within the guinea pig spinal cord white matter.
    Galle B; Ouyang H; Shi R; Nauman E
    J Biomech; 2007; 40(13):3029-33. PubMed ID: 17675041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction.
    Jensen JM; Shi R
    J Neurophysiol; 2003 Oct; 90(4):2334-40. PubMed ID: 12853442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolonged focal application of polyethylene glycol induces conduction block in guinea pig spinal cord white matter.
    Cole A; Shi R
    Toxicol In Vitro; 2005 Mar; 19(2):215-20. PubMed ID: 15649635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distribution of tissue damage in the spinal cord is influenced by the contusion velocity.
    Sparrey CJ; Choo AM; Liu J; Tetzlaff W; Oxland TR
    Spine (Phila Pa 1976); 2008 Oct; 33(22):E812-9. PubMed ID: 18923304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compression of rat spinal cord in vitro: effects of ethanol on recovery of axonal conduction.
    Ridella SA; Anderson TE
    Cent Nerv Syst Trauma; 1986; 3(3):195-205. PubMed ID: 3802222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conduction block in acute and chronic spinal cord injury: different dose-response characteristics for reversal by 4-aminopyridine.
    Shi R; Kelly TM; Blight AR
    Exp Neurol; 1997 Dec; 148(2):495-501. PubMed ID: 9417828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical roles of decompression in functional recovery of ex vivo spinal cord white matter.
    Ouyang H; Galle B; Li J; Nauman E; Shi R
    J Neurosurg Spine; 2009 Feb; 10(2):161-70. PubMed ID: 19278332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose responses of three 4-aminopyridine derivatives on axonal conduction in spinal cord trauma.
    McBride JM; Smith DT; Byrn SR; Borgens RB; Shi R
    Eur J Pharm Sci; 2006 Feb; 27(2-3):237-42. PubMed ID: 16297607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of membrane sealing in injured mammalian spinal cord axons.
    Shi R; Asano T; Vining NC; Blight AR
    J Neurophysiol; 2000 Oct; 84(4):1763-9. PubMed ID: 11024068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutathione and ascorbic acid enhance recovery of Guinea pig spinal cord white matter following ischemia and acrolein exposure.
    Logan MP; Parker S; Shi R
    Pathobiology; 2005; 72(4):171-8. PubMed ID: 16127292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon monoxide-releasing molecule tricarbonyldichlororuthenium (II) dimer induces concentration-dependent alterations in the electrophysiological properties of axons in mammalian spinal cord.
    Davies AL; Kramer JL; Hayes KC
    Neuroscience; 2008 Feb; 151(4):1104-11. PubMed ID: 18248914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compression injury of mammalian spinal cord in vitro and the dynamics of action potential conduction failure.
    Shi R; Blight AR
    J Neurophysiol; 1996 Sep; 76(3):1572-80. PubMed ID: 8890277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a 0.5-T static magnetic field on conduction in guinea pig spinal cord.
    Coots A; Shi R; Rosen AD
    J Neurol Sci; 2004 Jul; 222(1-2):55-7. PubMed ID: 15240196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of membrane sealing following transection in mammalian spinal cord axons.
    Shi R; Pryor JD
    Neuroscience; 2000; 98(1):157-66. PubMed ID: 10858622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of spinal cord injury: a multimodal investigation using ex vivo guinea pig spinal cord white matter.
    Ouyang H; Galle B; Li J; Nauman E; Shi R
    J Neurotrauma; 2008 Jan; 25(1):19-29. PubMed ID: 18355155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axonal changes in spinal cord injured patients distal to the site of injury.
    Lin CS; Macefield VG; Elam M; Wallin BG; Engel S; Kiernan MC
    Brain; 2007 Apr; 130(Pt 4):985-94. PubMed ID: 17264094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.