These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
972 related articles for article (PubMed ID: 16510875)
1. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Gomes NP; Bjerke G; Llorente B; Szostek SA; Emerson BM; Espinosa JM Genes Dev; 2006 Mar; 20(5):601-12. PubMed ID: 16510875 [TBL] [Abstract][Full Text] [Related]
2. The Establishment of a Hyperactive Structure Allows the Tumour Suppressor Protein p53 to Function through P-TEFb during Limited CDK9 Kinase Inhibition. Albert TK; Antrecht C; Kremmer E; Meisterernst M PLoS One; 2016; 11(1):e0146648. PubMed ID: 26745862 [TBL] [Abstract][Full Text] [Related]
3. FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH. Wada T; Orphanides G; Hasegawa J; Kim DK; Shima D; Yamaguchi Y; Fukuda A; Hisatake K; Oh S; Reinberg D; Handa H Mol Cell; 2000 Jun; 5(6):1067-72. PubMed ID: 10912001 [TBL] [Abstract][Full Text] [Related]
4. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. Wada T; Takagi T; Yamaguchi Y; Watanabe D; Handa H EMBO J; 1998 Dec; 17(24):7395-403. PubMed ID: 9857195 [TBL] [Abstract][Full Text] [Related]
5. Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription. Zhou M; Deng L; Lacoste V; Park HU; Pumfery A; Kashanchi F; Brady JN; Kumar A J Virol; 2004 Dec; 78(24):13522-33. PubMed ID: 15564463 [TBL] [Abstract][Full Text] [Related]
6. Bromodomain protein Brd4 regulates human immunodeficiency virus transcription through phosphorylation of CDK9 at threonine 29. Zhou M; Huang K; Jung KJ; Cho WK; Klase Z; Kashanchi F; Pise-Masison CA; Brady JN J Virol; 2009 Jan; 83(2):1036-44. PubMed ID: 18971272 [TBL] [Abstract][Full Text] [Related]
7. CTCF regulates NELF, DSIF and P-TEFb recruitment during transcription. Laitem C; Zaborowska J; Tellier M; Yamaguchi Y; Cao Q; Egloff S; Handa H; Murphy S Transcription; 2015; 6(5):79-90. PubMed ID: 26399478 [TBL] [Abstract][Full Text] [Related]
8. The transcription elongation factors NELF, DSIF and P-TEFb control constitutive transcription in a gene-specific manner. Fujita T; Piuz I; Schlegel W FEBS Lett; 2009 Sep; 583(17):2893-8. PubMed ID: 19654008 [TBL] [Abstract][Full Text] [Related]
9. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Viladevall L; St Amour CV; Rosebrock A; Schneider S; Zhang C; Allen JJ; Shokat KM; Schwer B; Leatherwood JK; Fisher RP Mol Cell; 2009 Mar; 33(6):738-51. PubMed ID: 19328067 [TBL] [Abstract][Full Text] [Related]
10. Transcription factor Sp3 represses expression of p21CIP¹ via inhibition of productive elongation by RNA polymerase II. Valin A; Ouyang J; Gill G Mol Cell Biol; 2013 Apr; 33(8):1582-93. PubMed ID: 23401853 [TBL] [Abstract][Full Text] [Related]
11. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Yamada T; Yamaguchi Y; Inukai N; Okamoto S; Mura T; Handa H Mol Cell; 2006 Jan; 21(2):227-37. PubMed ID: 16427012 [TBL] [Abstract][Full Text] [Related]
12. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146 [TBL] [Abstract][Full Text] [Related]
13. The BRCA1 COOH-terminal region acts as an RNA polymerase II carboxyl-terminal domain kinase inhibitor that modulates p21WAF1/CIP1 expression. Moisan A; Gaudreau L J Biol Chem; 2006 Jul; 281(30):21119-21130. PubMed ID: 16735508 [TBL] [Abstract][Full Text] [Related]
14. P-TEFb is a crucial co-factor for Myc transactivation. Gargano B; Amente S; Majello B; Lania L Cell Cycle; 2007 Aug; 6(16):2031-7. PubMed ID: 17700062 [TBL] [Abstract][Full Text] [Related]
15. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. Paparidis NF; Durvale MC; Canduri F Mol Biosyst; 2017 Jan; 13(2):246-276. PubMed ID: 27833949 [TBL] [Abstract][Full Text] [Related]
16. The glucocorticoid receptor blocks P-TEFb recruitment by NFkappaB to effect promoter-specific transcriptional repression. Luecke HF; Yamamoto KR Genes Dev; 2005 May; 19(9):1116-27. PubMed ID: 15879558 [TBL] [Abstract][Full Text] [Related]
17. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Larochelle S; Amat R; Glover-Cutter K; Sansó M; Zhang C; Allen JJ; Shokat KM; Bentley DL; Fisher RP Nat Struct Mol Biol; 2012 Nov; 19(11):1108-15. PubMed ID: 23064645 [TBL] [Abstract][Full Text] [Related]
18. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Shim EY; Walker AK; Shi Y; Blackwell TK Genes Dev; 2002 Aug; 16(16):2135-46. PubMed ID: 12183367 [TBL] [Abstract][Full Text] [Related]
19. Chromatin structure is implicated in "late" elongation checkpoints on the U2 snRNA and beta-actin genes. Egloff S; Al-Rawaf H; O'Reilly D; Murphy S Mol Cell Biol; 2009 Jul; 29(14):4002-13. PubMed ID: 19451231 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila. Ivaldi MS; Karam CS; Corces VG Genes Dev; 2007 Nov; 21(21):2818-31. PubMed ID: 17942706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]