These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
455 related articles for article (PubMed ID: 16510937)
1. Role of electrode design on the volume of tissue activated during deep brain stimulation. Butson CR; McIntyre CC J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937 [TBL] [Abstract][Full Text] [Related]
2. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. Wei XF; Grill WM J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238 [TBL] [Abstract][Full Text] [Related]
3. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Butson CR; McIntyre CC Clin Neurophysiol; 2005 Oct; 116(10):2490-500. PubMed ID: 16125463 [TBL] [Abstract][Full Text] [Related]
4. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes. Howell B; Huynh B; Grill WM J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244 [TBL] [Abstract][Full Text] [Related]
5. Current steering to control the volume of tissue activated during deep brain stimulation. Butson CR; McIntyre CC Brain Stimul; 2008 Jan; 1(1):7-15. PubMed ID: 19142235 [TBL] [Abstract][Full Text] [Related]
6. Sources and effects of electrode impedance during deep brain stimulation. Butson CR; Maks CB; McIntyre CC Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143 [TBL] [Abstract][Full Text] [Related]
7. Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface. McIntyre CC; Butson CR; Maks CB; Noecker AM Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():893-5. PubMed ID: 17946871 [TBL] [Abstract][Full Text] [Related]
8. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106 [TBL] [Abstract][Full Text] [Related]
9. A target-specific electrode and lead design for internal globus pallidus deep brain stimulation. Vasques X; Cif L; Mennessier G; Coubes P Stereotact Funct Neurosurg; 2010; 88(3):129-37. PubMed ID: 20357520 [TBL] [Abstract][Full Text] [Related]
10. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region. van Dijk KJ; Verhagen R; Chaturvedi A; McIntyre CC; Bour LJ; Heida C; Veltink PH J Neural Eng; 2015 Aug; 12(4):046003. PubMed ID: 26020096 [TBL] [Abstract][Full Text] [Related]
12. Theoretical analysis of the local field potential in deep brain stimulation applications. Lempka SF; McIntyre CC PLoS One; 2013; 8(3):e59839. PubMed ID: 23555799 [TBL] [Abstract][Full Text] [Related]
13. Human central nervous system circuits examined through the electrodes implanted for deep brain stimulation. Valls-Solé J; Compta Y; Costa J; Valldeoriola F; Rumià J Clin Neurophysiol; 2008 Jun; 119(6):1219-31. PubMed ID: 18308626 [TBL] [Abstract][Full Text] [Related]
14. Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. Miocinovic S; Parent M; Butson CR; Hahn PJ; Russo GS; Vitek JL; McIntyre CC J Neurophysiol; 2006 Sep; 96(3):1569-80. PubMed ID: 16738214 [TBL] [Abstract][Full Text] [Related]
15. Deep brain stimulation in the subthalamic area is more effective than nucleus ventralis intermedius stimulation for bilateral intention tremor. Hamel W; Herzog J; Kopper F; Pinsker M; Weinert D; Müller D; Krack P; Deuschl G; Mehdorn HM Acta Neurochir (Wien); 2007 Aug; 149(8):749-58; discussion 758. PubMed ID: 17660940 [TBL] [Abstract][Full Text] [Related]
16. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Horn A; Kühn AA Neuroimage; 2015 Feb; 107():127-135. PubMed ID: 25498389 [TBL] [Abstract][Full Text] [Related]
17. Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes. Anderson DN; Osting B; Vorwerk J; Dorval AD; Butson CR J Neural Eng; 2018 Apr; 15(2):026005. PubMed ID: 29235446 [TBL] [Abstract][Full Text] [Related]
18. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue. Gabran SR; Saad JH; Salama MM; Mansour RR Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6485-8. PubMed ID: 19964439 [TBL] [Abstract][Full Text] [Related]
19. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode. Zhang TC; Grill WM J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730 [TBL] [Abstract][Full Text] [Related]
20. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation. Walckiers G; Fuchs B; Thiran JP; Mosig JR; Pollo C J Neurosci Methods; 2010 Jan; 186(1):90-6. PubMed ID: 19895845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]