These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
455 related articles for article (PubMed ID: 16510937)
21. Computational Field Shaping for Deep Brain Stimulation With Thousands of Contacts in a Novel Electrode Geometry. Willsie AC; Dorval AD Neuromodulation; 2015 Oct; 18(7):542-50; discussion 550-1. PubMed ID: 26245306 [TBL] [Abstract][Full Text] [Related]
22. Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Butson CR; Cooper SE; Henderson JM; McIntyre CC Neuroimage; 2007 Jan; 34(2):661-70. PubMed ID: 17113789 [TBL] [Abstract][Full Text] [Related]
23. Simulation and assessment of cerebrovascular damage in deep brain stimulation using a stereotactic atlas of vasculature and structure derived from multiple 3- and 7-tesla scans. Nowinski WL; Chua BC; Volkau I; Puspitasari F; Marchenko Y; Runge VM; Knopp MV J Neurosurg; 2010 Dec; 113(6):1234-41. PubMed ID: 20345226 [TBL] [Abstract][Full Text] [Related]
24. Microelectrode array for chronic deep-brain microstimulation and recording. McCreery D; Lossinsky A; Pikov V; Liu X IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580 [TBL] [Abstract][Full Text] [Related]
25. Spatial steering of deep brain stimulation volumes using a novel lead design. Martens HCF; Toader E; Decré MMJ; Anderson DJ; Vetter R; Kipke DR; Baker KB; Johnson MD; Vitek JL Clin Neurophysiol; 2011 Mar; 122(3):558-566. PubMed ID: 20729143 [TBL] [Abstract][Full Text] [Related]
26. Fabrication and initial testing of the μDBS: a novel Deep Brain Stimulation electrode with thousands of individually controllable contacts. Willsie A; Dorval A Biomed Microdevices; 2015; 17(3):9961. PubMed ID: 25981752 [TBL] [Abstract][Full Text] [Related]
27. Evaluating the impact of the deep brain stimulation induced electric field on subthalamic neurons: a computational modelling study. Yousif N; Purswani N; Bayford R; Nandi D; Bain P; Liu X J Neurosci Methods; 2010 Apr; 188(1):105-12. PubMed ID: 20116398 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of high-perimeter electrode designs for deep brain stimulation. Howell B; Grill WM J Neural Eng; 2014 Aug; 11(4):046026. PubMed ID: 25029124 [TBL] [Abstract][Full Text] [Related]
29. Endovascular deep brain stimulation: Investigating the relationship between vascular structures and deep brain stimulation targets. Neudorfer C; Bhatia K; Boutet A; Germann J; Elias GJ; Loh A; Paff M; Krings T; Lozano AM Brain Stimul; 2020; 13(6):1668-1677. PubMed ID: 33035721 [TBL] [Abstract][Full Text] [Related]
30. Theoretical Optimization of Stimulation Strategies for a Directionally Segmented Deep Brain Stimulation Electrode Array. Xiao Y; Peña E; Johnson MD IEEE Trans Biomed Eng; 2016 Feb; 63(2):359-71. PubMed ID: 26208259 [TBL] [Abstract][Full Text] [Related]
31. Predicting the effects of deep brain stimulation with diffusion tensor based electric field models. Butson CR; Cooper SE; Henderson JM; McIntyre CC Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):429-37. PubMed ID: 17354801 [TBL] [Abstract][Full Text] [Related]
32. Choosing electrodes for deep brain stimulation experiments--electrochemical considerations. Gimsa J; Habel B; Schreiber U; van Rienen U; Strauss U; Gimsa U J Neurosci Methods; 2005 Mar; 142(2):251-65. PubMed ID: 15698665 [TBL] [Abstract][Full Text] [Related]
33. Robust deep brain stimulation functional MRI procedures in rats and mice using an MR-compatible tungsten microwire electrode. Lai HY; Albaugh DL; Kao YC; Younce JR; Shih YY Magn Reson Med; 2015 Mar; 73(3):1246-51. PubMed ID: 24798216 [TBL] [Abstract][Full Text] [Related]
34. Influences of interpolation error, electrode geometry, and the electrode-tissue interface on models of electric fields produced by deep brain stimulation. Howell B; Naik S; Grill WM IEEE Trans Biomed Eng; 2014 Feb; 61(2):297-307. PubMed ID: 24448594 [TBL] [Abstract][Full Text] [Related]
35. Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. McIntyre CC; Mori S; Sherman DL; Thakor NV; Vitek JL Clin Neurophysiol; 2004 Mar; 115(3):589-95. PubMed ID: 15036055 [TBL] [Abstract][Full Text] [Related]
36. A Novel Lead Design for Modulation and Sensing of Deep Brain Structures. Connolly AT; Vetter RJ; Hetke JF; Teplitzky BA; Kipke DR; Pellinen DS; Anderson DJ; Baker KB; Vitek JL; Johnson MD IEEE Trans Biomed Eng; 2016 Jan; 63(1):148-57. PubMed ID: 26529747 [TBL] [Abstract][Full Text] [Related]
37. Modeling parkinsonian circuitry and the DBS electrode. II. Evaluation of a computer simulation model of the basal ganglia with and without subthalamic nucleus stimulation. Shils JL; Mei LZ; Arle JE Stereotact Funct Neurosurg; 2008; 86(1):16-29. PubMed ID: 17881885 [TBL] [Abstract][Full Text] [Related]
38. Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. Motta PS; Judy JW IEEE Trans Biomed Eng; 2005 May; 52(5):923-33. PubMed ID: 15887542 [TBL] [Abstract][Full Text] [Related]
39. Accuracy and distortion of deep brain stimulation electrodes on postoperative MRI and CT. Pinsker MO; Herzog J; Falk D; Volkmann J; Deuschl G; Mehdorn M Zentralbl Neurochir; 2008 Aug; 69(3):144-7. PubMed ID: 18666049 [TBL] [Abstract][Full Text] [Related]
40. High-resolution local field potentials measured with deep brain stimulation arrays. Zhang S; Connolly AT; Madden LR; Vitek JL; Johnson MD J Neural Eng; 2018 Aug; 15(4):046019. PubMed ID: 29651998 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]