These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16511024)

  • 1. Crystallization and preliminary X-ray analysis of the tungsten-dependent acetylene hydratase from Pelobacter acetylenicus.
    Einsle O; Niessen H; Abt DJ; Seiffert G; Schink B; Huber R; Messerschmidt A; Kroneck PM
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Mar; 61(Pt 3):299-301. PubMed ID: 16511024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein.
    Rosner BM; Schink B
    J Bacteriol; 1995 Oct; 177(20):5767-72. PubMed ID: 7592321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylene hydratase of Pelobacter acetylenicus. Molecular and spectroscopic properties of the tungsten iron-sulfur enzyme.
    Meckenstock RU; Krieger R; Ensign S; Kroneck PM; Schink B
    Eur J Biochem; 1999 Aug; 264(1):176-82. PubMed ID: 10447686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Living on acetylene. A primordial energy source.
    Ten Brink F
    Met Ions Life Sci; 2014; 14():15-35. PubMed ID: 25416389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Diazotrophy in the Acetylene-Fermenting Anaerobe Pelobacter sp. Strain SFB93.
    Akob DM; Baesman SM; Sutton JM; Fierst JL; Mumford AC; Shrestha Y; Poret-Peterson AT; Bennett S; Dunlap DS; Haase KB; Oremland RS
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28667109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase.
    Tenbrink F; Schink B; Kroneck PM
    J Bacteriol; 2011 Mar; 193(5):1229-36. PubMed ID: 21193613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase.
    Seiffert GB; Ullmann GM; Messerschmidt A; Schink B; Kroneck PM; Einsle O
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3073-7. PubMed ID: 17360611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations.
    Liao RZ; Yu JG; Himo F
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22523-7. PubMed ID: 21149684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus.
    Schmidt A; Frensch M; Schleheck D; Schink B; Müller N
    PLoS One; 2014; 9(12):e115902. PubMed ID: 25536080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylene degradation by new isolates of aerobic bacteria and comparison of acetylene hydratase enzymes.
    Rosner BM; Rainey FA; Kroppenstedt RM; Schink B
    FEMS Microbiol Lett; 1997 Mar; 148(2):175-80. PubMed ID: 9084145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical investigation of the first-shell mechanism of acetylene hydration catalyzed by a biomimetic tungsten complex.
    Liu YF; Liao RZ; Ding WJ; Yu JG; Liu RZ
    J Biol Inorg Chem; 2011 Jun; 16(5):745-52. PubMed ID: 21476050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylene as fast food: implications for development of life on anoxic primordial Earth and in the outer solar system.
    Oremland RS; Voytek MA
    Astrobiology; 2008 Feb; 8(1):45-58. PubMed ID: 18199006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization and preliminary X-ray analysis of the molybdenum-dependent pyrogallol-phloroglucinol transhydroxylase of Pelobacter acidigallici.
    Abt DJ; Einsle O; Niessen H; Krieger R; Messerschmidt A; Schink B; Kroneck PM
    Acta Crystallogr D Biol Crystallogr; 2002 Feb; 58(Pt 2):343-5. PubMed ID: 11807272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site.
    Kroneck PM
    J Biol Inorg Chem; 2016 Mar; 21(1):29-38. PubMed ID: 26790879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Structural-Functional Mimics of Acetylene Hydratase: Reversible Activation of Acetylene using a Biomimetic Tungsten Complex.
    Peschel LM; Belaj F; Mösch-Zanetti NC
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):13018-21. PubMed ID: 26480335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structural comparison of molybdenum cofactor-containing enzymes.
    Kisker C; Schindelin H; Baas D; Rétey J; Meckenstock RU; Kroneck PM
    FEMS Microbiol Rev; 1998 Dec; 22(5):503-21. PubMed ID: 9990727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of a bis(dithiolene)-supported tungsten-acetylenic complex as a model for acetylene hydratase.
    Cranswick MA; Sperber EC; Houser RP; Farquhar ER
    J Inorg Biochem; 2024 Jun; 255():112543. PubMed ID: 38554579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification, crystallization and preliminary X-ray diffraction analysis of a novel keto-deoxy-D-galactarate (KDG) dehydratase from Agrobacterium tumefaciens.
    Taberman H; Andberg M; Parkkinen T; Richard P; Hakulinen N; Koivula A; Rouvinen J
    Acta Crystallogr F Struct Biol Commun; 2014 Jan; 70(Pt 1):49-52. PubMed ID: 24419616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Mimics of Acetylene Hydratase: Tungsten Complexes Capable of Intramolecular Nucleophilic Attack on Acetylene.
    Vidovič C; Peschel LM; Buchsteiner M; Belaj F; Mösch-Zanetti NC
    Chemistry; 2019 Nov; 25(63):14267-14272. PubMed ID: 31603595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization and preliminary X-ray crystallographic analysis of type II dehydroquinase from Helicobacter pylori.
    Kwak JE; Lee JY; Han BW; Moon J J; Sohn SH; Suh SW
    Acta Crystallogr D Biol Crystallogr; 2001 Feb; 57(Pt 2):279-80. PubMed ID: 11173479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.