These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1651128)

  • 1. A divergent plastid genome in Conopholis americana, an achlorophyllous parasitic plant.
    Wimpee CF; Wrobel RL; Garvin DK
    Plant Mol Biol; 1991 Jul; 17(1):161-6. PubMed ID: 1651128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant.
    dePamphilis CW; Palmer JD
    Nature; 1990 Nov; 348(6299):337-9. PubMed ID: 2250706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of transfer RNA genes from the plastid 16S-23S ribosomal RNA gene spacer in a parasitic plant.
    Wimpee CF; Morgan R; Wrobel RL
    Curr Genet; 1992 Apr; 21(4-5):417-22. PubMed ID: 1525868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An aberrant plastid ribosomal RNA gene cluster in the root parasite Conopholis americana.
    Wimpee CF; Morgan R; Wrobel R
    Plant Mol Biol; 1992 Jan; 18(2):275-85. PubMed ID: 1731989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of a functional plastid tRNA(Cys) gene is associated with loss of photosynthesis in a lineage of parasitic plants.
    Taylor GW; Wolfe KH; Morden CW; dePamphilis CW; Palmer JD
    Curr Genet; 1991 Dec; 20(6):515-8. PubMed ID: 1723664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A subset of conserved tRNA genes in plastid DNA of nongreen plants.
    Lohan AJ; Wolfe KH
    Genetics; 1998 Sep; 150(1):425-33. PubMed ID: 9725858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii.
    Funk HT; Berg S; Krupinska K; Maier UG; Krause K
    BMC Plant Biol; 2007 Aug; 7():45. PubMed ID: 17714582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant.
    Wolfe KH; Morden CW; Palmer JD
    Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10648-52. PubMed ID: 1332054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastid translation and transcription genes in a non-photosynthetic plant: intact, missing and pseudo genes.
    Morden CW; Wolfe KH; dePamphilis CW; Palmer JD
    EMBO J; 1991 Nov; 10(11):3281-8. PubMed ID: 1915295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small single-copy region of plastid DNA in the non-photosynthetic angiosperm Epifagus virginiana contains only two genes. Differences among dicots, monocots and bryophytes in gene organization at a non-bioenergetic locus.
    Wolfe KH; Morden CW; Palmer JD
    J Mol Biol; 1992 Jan; 223(1):95-104. PubMed ID: 1731088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of the plastid ribosomal RNA operon in a nongreen parasitic plant: accelerated sequence evolution, altered promoter structure, and tRNA pseudogenes.
    Wolfe KH; Katz-Downie DS; Morden CW; Palmer JD
    Plant Mol Biol; 1992 Apr; 18(6):1037-48. PubMed ID: 1600142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis.
    Wickett NJ; Zhang Y; Hansen SK; Roper JM; Kuehl JV; Plock SA; Wolf PG; DePamphilis CW; Boore JL; Goffinet B
    Mol Biol Evol; 2008 Feb; 25(2):393-401. PubMed ID: 18056074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants.
    Wolfe AD; dePamphilis CW
    Mol Biol Evol; 1998 Oct; 15(10):1243-58. PubMed ID: 9787431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular systematics of the parasitic genus Conopholis (Orobanchaceae) inferred from plastid and nuclear sequences.
    Rodrigues AG; Colwell AE; Stefanovic S
    Am J Bot; 2011 May; 98(5):896-908. PubMed ID: 21613187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Plastid Genome of Polytoma uvella Is the Largest Known among Colorless Algae and Plants and Reflects Contrasting Evolutionary Paths to Nonphotosynthetic Lifestyles.
    Figueroa-Martinez F; Nedelcu AM; Smith DR; Reyes-Prieto A
    Plant Physiol; 2017 Feb; 173(2):932-943. PubMed ID: 27932420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastids of three Cuscuta species differing in plastid coding capacity have a common parasite-specific RNA composition.
    Berg S; Krupinska K; Krause K
    Planta; 2003 Nov; 218(1):135-42. PubMed ID: 12898255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ins and outs of editing and splicing of plastid RNAs: lessons from parasitic plants.
    Tillich M; Krause K
    N Biotechnol; 2010 Jul; 27(3):256-66. PubMed ID: 20206308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromoplast formation during tomato fruit ripening. No evidence for plastid DNA methylation.
    Marano MR; Carrillo N
    Plant Mol Biol; 1991 Jan; 16(1):11-9. PubMed ID: 1653626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinach plastid genes coding for initiation factor IF-1, ribosomal protein S11 and RNA polymerase alpha-subunit.
    Sijben-Müller G; Hallick RB; Alt J; Westhoff P; Herrmann RG
    Nucleic Acids Res; 1986 Jan; 14(2):1029-44. PubMed ID: 3003688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants.
    Lee J; Cho CH; Park SI; Choi JW; Song HS; West JA; Bhattacharya D; Yoon HS
    BMC Biol; 2016 Sep; 14():75. PubMed ID: 27589960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.