These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16511323)

  • 1. Crystallization and preliminary X-ray crystallographic investigations on a betagamma-crystallin domain of absent in melanoma 1 (AIM1), a protein from Homo sapiens.
    Aravind P; Rajini B; Sharma Y; Sankaranarayanan R
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Mar; 62(Pt 3):282-4. PubMed ID: 16511323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability, homodimerization, and calcium-binding properties of a single, variant betagamma-crystallin domain of the protein absent in melanoma 1 (AIM1).
    Rajini B; Graham C; Wistow G; Sharma Y
    Biochemistry; 2003 Apr; 42(15):4552-9. PubMed ID: 12693952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the limits of sequence and structure in a variant betagamma-crystallin domain of the protein absent in melanoma-1 (AIM1).
    Aravind P; Wistow G; Sharma Y; Sankaranarayanan R
    J Mol Biol; 2008 Sep; 381(3):509-18. PubMed ID: 18582473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urochordate betagamma-crystallin and the evolutionary origin of the vertebrate eye lens.
    Shimeld SM; Purkiss AG; Dirks RP; Bateman OA; Slingsby C; Lubsen NH
    Curr Biol; 2005 Sep; 15(18):1684-9. PubMed ID: 16169492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional domain swapping in nitrollin, a single-domain betagamma-crystallin from Nitrosospira multiformis, controls protein conformation and stability but not dimerization.
    Aravind P; Suman SK; Mishra A; Sharma Y; Sankaranarayanan R
    J Mol Biol; 2009 Jan; 385(1):163-77. PubMed ID: 18976659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium Binding Dramatically Stabilizes an Ancestral Crystallin Fold in Tunicate βγ-Crystallin.
    Kozlyuk N; Sengupta S; Bierma JC; Martin RW
    Biochemistry; 2016 Dec; 55(50):6961-6968. PubMed ID: 27992995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divalent Cations and the Divergence of
    Roskamp KW; Kozlyuk N; Sengupta S; Bierma JC; Martin RW
    Biochemistry; 2019 Nov; 58(45):4505-4518. PubMed ID: 31647219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins?
    Weadick CJ; Chang BS
    Mol Biol Evol; 2009 May; 26(5):1127-42. PubMed ID: 19233964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+-binding motif of βγ-crystallins.
    Srivastava SS; Mishra A; Krishnan B; Sharma Y
    J Biol Chem; 2014 Apr; 289(16):10958-10966. PubMed ID: 24567326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial βγ-crystallins.
    Mishra A; Krishnan B; Srivastava SS; Sharma Y
    Prog Biophys Mol Biol; 2014 Jul; 115(1):42-51. PubMed ID: 24594023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Transition Metal-Binding, Trimeric βγ-Crystallin from Methane-Producing Thermophilic Archaea, Methanosaeta thermophila.
    Srivastava SS; Jamkhindikar AA; Raman R; Jobby MK; Chadalawada S; Sankaranarayanan R; Sharma Y
    Biochemistry; 2017 Mar; 56(9):1299-1310. PubMed ID: 28029780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary remodeling of βγ-crystallins for domain stability at cost of Ca2+ binding.
    Suman SK; Mishra A; Ravindra D; Yeramala L; Sharma Y
    J Biol Chem; 2011 Dec; 286(51):43891-43901. PubMed ID: 21949186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explosive expansion of betagamma-crystallin genes in the ancestral vertebrate.
    Kappé G; Purkiss AG; van Genesen ST; Slingsby C; Lubsen NH
    J Mol Evol; 2010 Sep; 71(3):219-30. PubMed ID: 20725717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association properties and unfolding of a βγ-crystallin domain of a Vibrio-specific protein.
    Suman SK; Ravindra D; Sharma Y; Mishra A
    PLoS One; 2013; 8(1):e53610. PubMed ID: 23349723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disability for function: loss of Ca(2+)-binding is obligatory for fitness of mammalian βγ-crystallins.
    Suman SK; Mishra A; Yeramala L; Rastogi ID; Sharma Y
    Biochemistry; 2013 Dec; 52(50):9047-58. PubMed ID: 24251594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The βγ-crystallin domain of Lysinibacillus sphaericus phosphatidylinositol phospholipase C plays a central role in protein stability.
    Cerminati S; Paoletti L; Peirú S; Menzella HG; Castelli ME
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):6997-7005. PubMed ID: 29909572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and Functional Characterization of the C-Terminal Domain of the β-Actin-Binding Protein AIM1 In Vitro.
    Wu F; Cheng L; Yu Q; Zhang L; Li H; Wang C
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30544954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallization and preliminary crystallographic analysis of the NAD(H)-binding domain of Escherichia coli transhydrogenase.
    Oswald C; Johansson T; Törnroth S; Okvist M; Krengel U
    Acta Crystallogr D Biol Crystallogr; 2004 Apr; 60(Pt 4):743-5. PubMed ID: 15039572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization and preliminary crystallographic analysis of human serine dehydratase.
    Sun L; Li X; Dong Y; Yang M; Liu Y; Han X; Zhang X; Pang H; Rao Z
    Acta Crystallogr D Biol Crystallogr; 2003 Dec; 59(Pt 12):2297-9. PubMed ID: 14646100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of geodin. A betagamma-crystallin-type protein from a sponge.
    Giancola C; Pizzo E; Di Maro A; Cubellis MV; D'Alessio G
    FEBS J; 2005 Feb; 272(4):1023-35. PubMed ID: 15691335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.