BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16511516)

  • 41. [Coculture of dendritic cell with cytokine-induced killer results in a significant increase in cytotoxic activity of CIK to tumor cells in vitro and in vivo].
    Ge W; Li CH; Zhang W; Han Q; Deng WM; Chen L; You SG; Zhao CH
    Zhonghua Xue Ye Xue Za Zhi; 2004 May; 25(5):277-80. PubMed ID: 15182535
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Generation of donor natural killer cells from CD34(+) progenitor cells and subsequent infusion after HLA-mismatched allogeneic hematopoietic cell transplantation: a feasibility study.
    Yoon SR; Lee YS; Yang SH; Ahn KH; Lee JH; Lee JH; Kim DY; Kang YA; Jeon M; Seol M; Ryu SG; Chung JW; Choi I; Lee KH
    Bone Marrow Transplant; 2010 Jun; 45(6):1038-46. PubMed ID: 19881555
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The action of donor-derived NK cell in leukemic mice MHC haplotype-mismatched bone marrow transplantation].
    Wang CY; Tan H; Guo KY
    Zhonghua Xue Ye Xue Za Zhi; 2009 Feb; 30(2):107-10. PubMed ID: 19563021
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Allogeneic versus syngeneic killer splenocytes as effector cells for the induction of graft-versus-tumor effect.
    Morecki S; Yacovlev E; Gelfand Y; Vilensky A; Slavin S
    Biol Blood Marrow Transplant; 2004 Jan; 10(1):40-8. PubMed ID: 14752778
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Autologous natural killer cell therapy for human recurrent malignant glioma.
    Ishikawa E; Tsuboi K; Saijo K; Harada H; Takano S; Nose T; Ohno T
    Anticancer Res; 2004; 24(3b):1861-71. PubMed ID: 15274367
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic control of in vitro NK-activity and in vivo resistance to tumors.
    Kärre K; Klein GO; Kiessling R; Klein G
    Tokai J Exp Clin Med; 1983 Dec; 8(5-6):429-48. PubMed ID: 6681339
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood.
    Klingemann HG; Wong E; Maki G
    Biol Blood Marrow Transplant; 1996 May; 2(2):68-75. PubMed ID: 9118301
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activated peripheral blood mononuclear cells from patients receiving subcutaneous interleukin-2 following autologous stem cell transplantation prolong survival of SCID mice bearing human lymphoma.
    Katsanis E; Weisdorf DJ; Miller JS
    Bone Marrow Transplant; 1998 Jul; 22(2):185-91. PubMed ID: 9707028
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anti-myeloma activity of endogenous and adoptively transferred activated natural killer cells in experimental multiple myeloma model.
    Alici E; Konstantinidis KV; Sutlu T; Aints A; Gahrton G; Ljunggren HG; Dilber MS
    Exp Hematol; 2007 Dec; 35(12):1839-46. PubMed ID: 18036444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proliferation of functional human natural killer cells with anti-HIV-1 activity in NOD/SCID/Jak3(null) mice.
    Hattori S; Matsuda K; Kariya R; Harada H; Okada S
    Microbiol Immunol; 2016 Feb; 60(2):106-13. PubMed ID: 26708420
    [TBL] [Abstract][Full Text] [Related]  

  • 51. hIL-15-gene modified human natural killer cells (NKL-IL15) exhibit anti-human leukemia functions.
    Jiang W; Zhang C; Tian Z; Zhang J
    J Cancer Res Clin Oncol; 2018 Jul; 144(7):1279-1288. PubMed ID: 29737430
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reversal of acute myelogenous leukemia in humanized SCID mice using a novel adoptive transfer approach.
    Cesano A; Visonneau S; Cioé L; Clark SC; Rovera G; Santoli D
    J Clin Invest; 1994 Sep; 94(3):1076-84. PubMed ID: 8083348
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Cytokine Cocktail Augments the Efficacy of Adoptive NK-92 Cell Therapy Against Mouse Xenografts of Human Cancer.
    Samara P; Skopeliti M; Tsiatas ML; Georgaki S; Gouloumis C; Voelter W; Dimopoulos AM; Bamias A; Tsitsilonis OE
    Anticancer Res; 2016 Jul; 36(7):3373-82. PubMed ID: 27354596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Real-Time Tracking of
    Uong TNT; Lee KH; Ahn SJ; Kim KW; Min JJ; Hyun H; Yoon MS
    Front Immunol; 2018; 9():825. PubMed ID: 29770131
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy.
    Fujisaki H; Kakuda H; Shimasaki N; Imai C; Ma J; Lockey T; Eldridge P; Leung WH; Campana D
    Cancer Res; 2009 May; 69(9):4010-7. PubMed ID: 19383914
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced Bone Marrow Homing of Natural Killer Cells Following mRNA Transfection With Gain-of-Function Variant CXCR4
    Levy E; Reger R; Segerberg F; Lambert M; Leijonhufvud C; Baumer Y; Carlsten M; Childs R
    Front Immunol; 2019; 10():1262. PubMed ID: 31231387
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Natural killer cell adoptive immunotherapy: Coming of age.
    Baggio L; Laureano ÁM; Silla LMDR; Lee DA
    Clin Immunol; 2017 Apr; 177():3-11. PubMed ID: 26883680
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intraperitoneal delivery of human natural killer cells for treatment of ovarian cancer in a mouse xenograft model.
    Geller MA; Knorr DA; Hermanson DA; Pribyl L; Bendzick L; McCullar V; Miller JS; Kaufman DS
    Cytotherapy; 2013 Oct; 15(10):1297-306. PubMed ID: 23993303
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The antileukemic potential of natural killer cells.
    Torelli GF; Peragine N; Mariglia P; Foà R
    Immunotherapy; 2016; 8(4):425-34. PubMed ID: 26973124
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Safety analysis of ex vivo-expanded canine natural killer cells in a xenogeneic mouse model of graft-versus-host disease.
    Kim CJ; Park SC; Lee SH; Lim YJ; Yoon M; Park JG; Baek YB; Cho KO; Hong JW; Shin DJ; Kim SK
    J Leukoc Biol; 2022 Feb; 111(2):439-450. PubMed ID: 33884654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.